精英家教网 > 高中数学 > 题目详情

【题目】已知O为坐标原点,椭圆的左、右焦点分别为,离心率,椭圆上的点到焦点的最短距离为

(1)求椭圆C的标准方程;

(2)T为直线上任意一点,过的直线交椭圆C于点P,Q,且为抛物线,求的最小值.

【答案】(1)(2)

【解析】

(1)由离心率和a,b,c的等量关系即可求得a,b,方程即可得出;(2) T为直线上任意一点,设,则,当时,直线的方程为,也符合方程. 当时,直线的斜率为,直线的方程为;将直线的方程与椭圆C的方程联立,利用韦达定理及弦长公式即可得出从而求得的表达式求最小值.

解:(1),得

故椭圆的标准方程为

(2)由(1)知,∵,故,设,∴,直线的斜率为,当时,直线的方程为,也符合方程. 当时,直线的斜率为,直线的方程为;设,将直线的方程与椭圆C的方程联立,得消去,得:

当且仅当,即时,等号成立.的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完 局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为 ,乙获胜的概率为 ,各局比赛结果相互独立.
(Ⅰ)求甲在4局以内(含 4 局)赢得比赛的概率;
(Ⅱ)记 X 为比赛决出胜负时的总局数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x+m)lnx,曲线y=f(x)在x=e(e为自然对数的底数)处得到切线与圆x2+y2=5在点(2,﹣1)处的切线平行.
(1)证明:
(2)若不等式(ax+1)(x﹣1)<(a+1)lnx在x∈(0,1)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=a(x﹣lnx)+ ,a∈R.
(I)讨论f(x)的单调性;
(II)当a=1时,证明f(x)>f′(x)+ 对于任意的x∈[1,2]成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)+g(x)=2x , 若存在x0∈[1,2]使得等式af(x0)+g(2x0)=0成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知角x始边与x轴的非负半轴重合,与圆x2+y2=4相交于点A,终边与圆x2+y2=4相交于点B,点B在x轴上的射影为C,△ABC的面积为S(x),函数y=S(x)的图象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn , 且a3=9,S6=60.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn+1﹣bn=an(n∈N+)且b1=3,求数列 的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的上、下焦点分别为F1 , F2 , 上焦点F1到直线 4x+3y+12=0的距离为3,椭圆C的离心率e=
(I)若P是椭圆C上任意一点,求| || |的取值范围;
(II)设过椭圆C的上顶点A的直线l与椭圆交于点B(B不在y轴上),垂直于l的直线与l交于点M,与x轴交于点H,若 =0,且| |=| |,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.
(Ⅰ)证明平面ABEF⊥平面EFDC;
(Ⅱ)求二面角E﹣BC﹣A的余弦值.

查看答案和解析>>

同步练习册答案