精英家教网 > 高中数学 > 题目详情
1.已知圆(x-1)2+y2=4上一动点Q,则点P(-2,-3)到点Q的距离的最小值为$3\sqrt{2}$-2.

分析 求出圆心与P的距离,减去半径,可得结论.

解答 解:由题意,圆心与P的距离为$\sqrt{(-2-1)^{2}+(0+3)^{2}}$=3$\sqrt{2}$,
∴点P(-2,-3)到点Q的距离的最小值为$3\sqrt{2}$-2,
故答案为:$3\sqrt{2}$-2.

点评 本题考查点与圆的位置关系,考查学生计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设定义在R上的函数f(x)的导函数为f′(x),且满足f(2-x)=f(x),$\frac{f′(x)}{x-1}$<0,若x1+x2>2,x1<x2,则(  )
A.f(x1)<f(x2B.f(x1)=f(x2
C.f(x1)>f(x2D.f(x1)与f(x2)的大小不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:
商店名称ABCDE
销售额x(千万元)35679
利润额y(千万元)23345
(Ⅰ)用最小二乘法计算利润额y对销售额x的回归直线方程$\widehaty=\widehatbx+\widehata$;
(Ⅱ)当销售额为4(千万元)时,估计利润额的大小.
附:线性回归方程$\widehaty=\widehatbx+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a1=3,${a_n}=\frac{1}{2}{a_{n-1}}+1(n≥2,n∈{N^*})$则数列{an}的通项公式是an=(  )
A.$\frac{{{2^n}+1}}{{{2^{n-1}}}}$B.$\frac{{{2^n}-1}}{{{2^{n-1}}}}$C.$\frac{{{2^n}+1}}{{{2^{n+1}}}}$D.$\frac{{{2^n}-1}}{{{2^{n+1}}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知幂函数y=f(x)的图象过点(2,4),则log2f($\frac{1}{2}$)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax+$\frac{b}{x}$+c是奇函数,且满足f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$.
(1)求a,b,c的值;
(2)试判断函数f(x)在区间(0,$\frac{1}{2}$)上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=2-x-$\frac{4}{x}$的值域为(-∞,-2]∪[6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.要得到函数y=sin2x的图象,只需将函数y=cos(2x+$\frac{π}{6}$)的图象(  )
A.向右平移$\frac{π}{3}$个单位B.向左平移$\frac{π}{4}$个单位
C.向左平移$\frac{π}{3}$个单位D.向右平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知过抛物线y2=4x的焦点F的直线l交抛物线于A,B两点.
(Ⅰ)求F点坐标;
(Ⅱ)试问在x轴上是否存在一点T(不与F重合),使∠ATF=∠BTF?若存在,求出T点坐标;若不存在,请说明理由.
(Ⅲ)若P是抛物线上异于A,B的任意一点,l1是抛物线的准线,直线PA、PB分别交l1于点M、N,求证:$\overrightarrow{OM}$•$\overrightarrow{ON}$为定值,并求出该定值.

查看答案和解析>>

同步练习册答案