精英家教网 > 高中数学 > 题目详情
设F(x)=2
x
+1,若F′(x)=f(x),则∫
 
2
0
f(2x)dx值为(  )
A、2
2
B、
2
C、2
D、1
分析:根据微积分定理的知识进行求解即可.
解答:解:∵F(x)=2
x
+1,
∴F′(x)=
1
x

∵F′(x)=f(x),
∴f(x)=
1
x
,f(2x)=
1
2x
=
1
2
x-
1
2

∴∫
 
2
0
f(2x)dx=∫
 
2
0
1
2
x-
1
2
dx=
1
2
•2x
1
2
|
2
0
=
1
2
×2
2
=2

故选:C.
点评:本题主要考查微积分定理的应用,要求熟练掌握常见函数的积分公式,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、设函数f(x),g(x)的定义域分别为DJ,DE.且DJ?DE,若对于任意x∈DJ,都有g(x)=f(x),则称函数g(x)为f(x)在DE上的一个延拓函数.设f(x)=xlnx(x>0),g(x)为f(x)在(-∞,0)∪(0,+∞)上的一个延拓函数,且g(x)是奇函数,则g(x)=
xln|x|
;设f(x)=2x-1(x≤0),g(x)为f(x)在R上的一个延拓函数,且g(x)是偶函数,则g(x)=
2-|x|-1

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
2x+1(x≥0)
f(x+1)(x<0)
,则f(-1)=(  )
A、1
B、2
C、4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

用min{a,b}表示a,b两个数中的较小值.设f(x)={2x-1,
1x
}(x>0),则f(x)的最大值为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
2x+1,x≥1
2-x,x<1
,则f(f(-2))的值为
9
9

查看答案和解析>>

同步练习册答案