精英家教网 > 高中数学 > 题目详情
11.已知F是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦点,过点F向C的一条渐近线引垂线,垂足为A,交另一条渐近线于点B,F在线段AB上,O为坐标原点,若|OB|=2|OA|,则双曲线C的离心率是$\frac{{2\sqrt{3}}}{3}$.

分析 由题意,OA⊥OB,|OB|=2|OA|,可得∠AOB=60°,利用$\frac{b}{a}$=tan∠AOF=tan30°=$\frac{\sqrt{3}}{3}$,e=$\sqrt{1+(\frac{b}{a})^{2}}$,即可求出双曲线C的离心率.

解答 解:由题意,OA⊥aB,|OB|=2|OA|,
∴∠AOB=60°,
∴∠AOF=30°,
∴$\frac{b}{a}$=tan∠AOF=tan30°=$\frac{\sqrt{3}}{3}$,
∴e=$\sqrt{1+(\frac{b}{a})^{2}}$=$\frac{{2\sqrt{3}}}{3}$.
故答案为:$\frac{{2\sqrt{3}}}{3}$.

点评 本题考查双曲线C的离心率,考查特殊角的三角函数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知x1、x2是函数f(x)=x2+mx+t的两个零点,其中常数m、t∈Z,记$\sum_{i=0}^n{x^i}={x^0}+{x^1}+…+{x^n}$,设${T_n}=\sum_{r=0}^n{x_1^{n-r}x_2^r}$(n∈N*).
(1)用m、t表示T1、T2
(2)求证:T5=-mT4-tT3
(3)求证:对任意的n∈N*,Tn∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等差数列{an}前四项中第二项为606,前四项和S4为3883,则该数列第4项为(  )
A.3074B.2065C.2024D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知直线y=kx+1与双曲线3x2-y2=3的右支相交于不同的两点,则k的取值范围是$(-2,-\sqrt{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点A(0,2),B(4,0),C(-2,1),若直线CD与直线AB相交,且交点D在线段AB上,直线CD的斜率为k,求$k+\frac{1}{2}+\frac{1}{{k+\frac{1}{2}}}$的取值范围(  )
A..$(2,\frac{10}{3})$B.$(-∞,\frac{10}{3})$C.$[2,\frac{10}{3}]$D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图的程序图的算法思路中是一种古老而有效的算法--辗转相除法,执行改程序框图,若输入的m,n的值分别为30,42,则输出的m=(  )
A.0B.2C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=ax3+bx+c (a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f?(x)的最小值为-12.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调增区间,并求函数f(x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a=$\frac{\sqrt{3}}{2}$cos5°-$\frac{1}{2}$sin5°,b=2sin27°•cos27°,c=$\sqrt{\frac{1+cos48°}{2}}$,则a、b、c的大小关系是(  )
A.a<b<cB.c<a<bC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点P、Q分别为函数f(x)=x2+1(x≥0)和$g(x)=\sqrt{x-1}$图象上的点,则点P和Q两点距离的最小值为$\frac{{3\sqrt{2}}}{4}$.

查看答案和解析>>

同步练习册答案