精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)求f(x)的定义域;
(2)证明f(x)是奇函数;
(3)判断函数y=f(x)与y=2的图象是否有公共点,并说明理由.

解:(1)由题意可得
解得-1<x<1
∴函数的定义域(-1,1)
(2)函数的定义域(-1,1)关于原点对称
f(-x)=lg=-f(x)
函数f(x)为奇函数
(3)令可得=100,解得x=-
函数y=f(x)与y=2的图象是有公共点
分析:(1)由题意可得,解不等式可得.
(2)结合(1)所求的定义域,检验f(-x)与f(x)的关系,从而进行判断.
(3)转化为判断方程的解的情况,通过解方程进行判断.
点评:本题主要考查了对数函数的定义域,函数的奇偶性的判断:①)函数的定义域关于原点对称②验证f(-x)与f(x)的关系;方程与函数的转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)求f(x)的定义域;
(2)判断的奇偶性并予以证明.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省深圳实验学校高三(上)数学周末练习(九)(解析版) 题型:解答题

已知函数
(1)求f(x)的单调递增区间;
(2)若不等式|f(x)-m|<2在上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省肇庆市高一(上)期末数学试卷(解析版) 题型:解答题

已知函数
(1)求f(1),f(-3),f(a+1)的值;
(2)求函数f(x)的零点.

查看答案和解析>>

科目:高中数学 来源:2010年重庆市求精中学高考数学一模试卷(理科)(解析版) 题型:解答题

已知函数
(1)求f(x)的最小正周期
(2)当x∈[0,π]时,若f(x)=1,求x的值.

查看答案和解析>>

科目:高中数学 来源:2011年安徽省高二下学期第一次月考数学文卷 题型:解答题

(12分)

已知函数

(1)求f(x)的定义域;

(2)判断f(x)的奇偶性并证明;

 

 

查看答案和解析>>

同步练习册答案