精英家教网 > 高中数学 > 题目详情

已知函数数学公式,(a>0且a≠1).
(1)判断函数f(x)的单调性,并证明;
(2)当函数f(x)的定义域为(-1,1)时,求使f(1-m)+f(1-m2)<0成立的实数m的取值范围.

解:(1)函数f(x)在R上为增函数.
证明如下:设x1,x2∈R,且x1<x2
则f(x1)-f(x2)=[(ax1-a-x1)-(ax2-a-x2)]=
当a>1时,a2-1>0,ax1-ax2<0,
∴f(x1)<f(x2);
当0<a<1时,a2-1<0,ax1-ax2>0,
∴f(x1)<f(x2);
∴当a>0且a≠1时,f(x)在R上是增函数;
(2)∵f(x)定义域为(-1,1),在数轴上关于原点对称,…(8分)
又∵==-f(x),
∴f(x)是定义域(-1,1)上的奇函数. …(10分)
由f(1-m)+f(1-m2)<0得f(1-m)<-f(1-m2),∴f(1-m)<f(m2-1),…(12分)
,…(14分)
解得即为所求m 的取值范围. …(15分)
分析:(1)利用定义法设x1,x2∈R,且x1<x2,再根据f(x1)-f(x2)与0的大小比较,对其进行化简,然后再对a进行讨论,从而求解;
(2)先证明f(x)是奇函数,再将f(1-m)+f(1-m2)<0移项,利用奇函数的性质和函数的单调性进行求解;
点评:此题主要考查函数的奇偶性,要知道偶函数的性质f(-x)=f(x),奇函数的性质f(-x)=-f(x),是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年江苏省连云港市新海高级中学高一(上)期中数学试卷(解析版) 题型:解答题

已知函数((a>0且a≠1)).
(1)当x∈(1,a-2)时,函数f(x)的值域是(1,+∞),求实数a的值;
(2)令函数g(x)=-ax2+8(x-1)af(x)-5.当a≥8时,存在最大实数t,使得x∈(1,t],有-5≤g(x)≤4恒成立,请写出t与a的关系式.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年黑龙江省大庆实验中学高一(上)期中数学试卷(解析版) 题型:解答题

已知函数,其中a>0且a≠1.
(1)判断f(x)的奇偶性;
(2)判断f(x)在R上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省连云港市新海高级中学高一(上)期中数学试卷(解析版) 题型:解答题

已知函数((a>0且a≠1)).
(1)当x∈(1,a-2)时,函数f(x)的值域是(1,+∞),求实数a的值;
(2)令函数g(x)=-ax2+8(x-1)af(x)-5.当a≥8时,存在最大实数t,使得x∈(1,t],有-5≤g(x)≤4恒成立,请写出t与a的关系式.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省武汉市武昌区高一(下)期末数学试卷(解析版) 题型:解答题

已知函数,其中a>0且a≠1.
(1)求f(x)的解析式;
(2)判断并证明f(x)的单调性;
(3)当x∈(-∞,2)时,f(x)-4的值恒为负数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市高二上学期开学考试数学卷 题型:解答题

(本小题满分10分)                                                        

已知函数f ( x ) =( a > 0且a ≠1)图象经过点Q(8, 6).

(Ⅰ) 求a的值,并在直角坐标系中画出函数f ( x )的大致图象;

(Ⅱ) 求函数f ( t ) – 9的零点.

 

查看答案和解析>>

同步练习册答案