精英家教网 > 高中数学 > 题目详情
15.已知函数$f(x)=\frac{lnx}{x+1}-\frac{{2{f^'}(1)}}{x}$.
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)证明:当0<x<1时,(x-1)f(x)<lnx.

分析 (1)求出函数的导数,计算f(1),f′(1),切线切线方程即可;
(2)问题等价于:$\frac{2lnx}{{1-{x^2}}}+\frac{1}{x}>0$,令$g(x)=2lnx+\frac{{1-{x^2}}}{x}$,根据函数的单调性证明即可.

解答 解:(1)函数f(x)的定义域为(0,+∞)
因为$f'(x)=\frac{{\frac{x+1}{x}-lnx}}{{{{(x+1)}^2}}}+\frac{2f'(1)}{x^2}$,…(2分)
所以$f'(1)=\frac{1}{2}+2f'(1)$,即$f'(1)=-\frac{1}{2}$,…(3分)
所以$f(x)=\frac{lnx}{x+1}+\frac{1}{x}$,$f'(x)=\frac{{\frac{x+1}{x}-lnx}}{{{{(x+1)}^2}}}-\frac{1}{x^2}$,…(4分)
令x=1,得f(1)=1,
所以函数f(x)在点(1,f(1))处的切线方程为:
$y-1=-\frac{1}{2}(x-1)$,即x+2y-3=0.…(6分)
(2)因为0<x<1,所以不等式等价于:$\frac{2lnx}{{1-{x^2}}}+\frac{1}{x}>0$,…(7分)
因为$\frac{2lnx}{{1-{x^2}}}+\frac{1}{x}=\frac{1}{{1-{x^2}}}(2lnx+\frac{{1-{x^2}}}{x})$,
令$g(x)=2lnx+\frac{{1-{x^2}}}{x}$,则$g'(x)=\frac{{-{x^2}+2x-1}}{x^2}=-\frac{{{{(x-1)}^2}}}{x^2}$,…(9分)
因为0<x<1,所以g'(x)<0,所以g(x)在(0,1)上为减函数.
又因为g(1)=0,所以,当0<x<1时,g(x)>g(1)=0,
此时,$\frac{1}{{1-{x^2}}}•g(x)>0$,即$\frac{2lnx}{{1-{x^2}}}+\frac{1}{x}>0$,…(11分)
所以,当0<x<1时,(x-1)•f(x)<lnx.…(12分)

点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及不等式的证明,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.下列函数中为偶函数的是(  )
A.y=sin|x|B.y=sin2xC.y=-sinxD.y=sinx+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.中央电视台第一套节目午间新闻的播出时间是每天中午12:00到12:30,在某星期天中午的午间新闻中将随机安排播出时长5分钟的有关电信诈骗的新闻报道.若小张于当天12:20打开电视,则他能收看到这条新闻的完整报道的概率是(  )
A.$\frac{2}{5}$B.$\frac{1}{3}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知sinα=$\frac{1}{3}$,且α为第二象限角,则tan(π-α)=(  )
A.-$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{4}$C.±$\frac{\sqrt{2}}{4}$D.-2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设命题$p:\frac{{2{x^2}}}{x+1}<1$,命题q:x2-(2a-1)x+a(a-1)≤0,若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线m,n与平面α、β,给出下列命题:其中正确的是(  )
A.若m∥α,n⊥β且α⊥β,则m∥nB.若m∥α,n⊥α,则m⊥n
C.若m∥α,n∥β且α∥β,则m∥nD.若α⊥β,α∩β=n,n⊥m⇒n⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若a∈R,则“a=1”是“|a|=1”的充分不必要条件.(填“充分不必要”,“必要不充分”,“充要”
或“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三个角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,且b=$\sqrt{3}$.数列{an}是等比数列,且首项a1=$\frac{1}{2}$,公比为$\frac{sinA}{a}$.
(1)求数列{an}的通项公式;
(2)若bn=-$\frac{lo{g}_{2}{a}_{n}}{{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限接近圆的面积,并创立了“割圆术”,利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”,如圆是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为(  )(参考数据:sin15°=0.2588,sin7.50=0.1305.
A.12B.24C.48D.96

查看答案和解析>>

同步练习册答案