分析 (1)求出函数的导数,计算f(1),f′(1),切线切线方程即可;
(2)问题等价于:$\frac{2lnx}{{1-{x^2}}}+\frac{1}{x}>0$,令$g(x)=2lnx+\frac{{1-{x^2}}}{x}$,根据函数的单调性证明即可.
解答 解:(1)函数f(x)的定义域为(0,+∞)
因为$f'(x)=\frac{{\frac{x+1}{x}-lnx}}{{{{(x+1)}^2}}}+\frac{2f'(1)}{x^2}$,…(2分)
所以$f'(1)=\frac{1}{2}+2f'(1)$,即$f'(1)=-\frac{1}{2}$,…(3分)
所以$f(x)=\frac{lnx}{x+1}+\frac{1}{x}$,$f'(x)=\frac{{\frac{x+1}{x}-lnx}}{{{{(x+1)}^2}}}-\frac{1}{x^2}$,…(4分)
令x=1,得f(1)=1,
所以函数f(x)在点(1,f(1))处的切线方程为:
$y-1=-\frac{1}{2}(x-1)$,即x+2y-3=0.…(6分)
(2)因为0<x<1,所以不等式等价于:$\frac{2lnx}{{1-{x^2}}}+\frac{1}{x}>0$,…(7分)
因为$\frac{2lnx}{{1-{x^2}}}+\frac{1}{x}=\frac{1}{{1-{x^2}}}(2lnx+\frac{{1-{x^2}}}{x})$,
令$g(x)=2lnx+\frac{{1-{x^2}}}{x}$,则$g'(x)=\frac{{-{x^2}+2x-1}}{x^2}=-\frac{{{{(x-1)}^2}}}{x^2}$,…(9分)
因为0<x<1,所以g'(x)<0,所以g(x)在(0,1)上为减函数.
又因为g(1)=0,所以,当0<x<1时,g(x)>g(1)=0,
此时,$\frac{1}{{1-{x^2}}}•g(x)>0$,即$\frac{2lnx}{{1-{x^2}}}+\frac{1}{x}>0$,…(11分)
所以,当0<x<1时,(x-1)•f(x)<lnx.…(12分)
点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及不等式的证明,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{2}}{4}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | ±$\frac{\sqrt{2}}{4}$ | D. | -2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m∥α,n⊥β且α⊥β,则m∥n | B. | 若m∥α,n⊥α,则m⊥n | ||
| C. | 若m∥α,n∥β且α∥β,则m∥n | D. | 若α⊥β,α∩β=n,n⊥m⇒n⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 24 | C. | 48 | D. | 96 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com