| A. | (-∞,$\frac{5}{6}$) | B. | (-∞,$\frac{8}{3}$) | C. | (-$\frac{3}{2}$,$\frac{5}{6}$) | D. | ($\frac{8}{3}$,+∞) |
分析 求出f′(x),问题转化为b<$\frac{{x}^{2}+2x}{x+1}$在[$\frac{1}{2}$,2]恒成立,令g(x)=$\frac{{x}^{2}+2x}{x+1}$,x∈[$\frac{1}{2}$,2],求出b的范围即可.
解答 解:∵f(x)=$\frac{{e}^{x}({x}^{2}-bx)}{x}$=ex(x-b),
∴f′(x)=ex(x-b+1),
若存在x∈[$\frac{1}{2}$,2],使得f(x)+xf′(x)>0,
则若存在x∈[$\frac{1}{2}$,2],使得ex(x-b)+xex(x-b+1)>0,
即b<$\frac{{x}^{2}+2x}{x+1}$在[$\frac{1}{2}$,2]恒成立,
令g(x)=$\frac{{x}^{2}+2x}{x+1}$,x∈[$\frac{1}{2}$,2],
则g′(x)=$\frac{{x}^{2}+2x+2}{{(x+1)}^{2}}$>0,
g(x)在[$\frac{1}{2}$,2]递增,
∴g(x)最大值=g(2)=$\frac{8}{3}$,
故b<$\frac{8}{3}$,
故选:B.
点评 本题考查了函数的单调性问题,考查导数的应用以及函数恒成立问题,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 存在函数f(x)使得对任意的实数y,都有等式f(cosy)=cos2y成立 | |
| B. | 存在函数f(x)使得对任意的实数y,都有等式f(siny)=sin2y成立 | |
| C. | 存在函数f(x)使得对任意的实数y,都有等式f(cosy)=cos3y成立 | |
| D. | 存在函数f(x)使得对任意的实数y,都有等式f(siny)=sin3y成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com