精英家教网 > 高中数学 > 题目详情
若函数f(x)满足f(x+1)=
1
2
f(x)
,则f(x)的解析式在下列四式中只有可能是(  )
分析:由一次函数,指数函数和对数函数的性质,结合代入法求函数解析式的方法和步骤,我们逐一判断四个答案中的函数,是否满足f(x+1)=
1
2
f(x)
,即可得到答案.
解答:解:若f(x)=
x
2
,则f(x+1)=
x+1
2
1
2
f(x)
,故A错误;
若f(x)=x+
1
2
,则f(x+1)=(x+1)+
1
2
1
2
f(x)
,故B错误;
若f(x)=2-x,则f(x+1)=2-(x+1)=
1
2
f(x)
,故C正确;
若f(x)=log
1
2
x
,则f(x+1)=log
1
2
(x+1)≠
1
2
f(x)
,故D错误;
故选C
点评:本题考查的知识点是函数的解析式的求解及常用方法,其中利用代入法,求出f(x+1)和
1
2
f(x)
,然后进行比照,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年湖北省荆州中学高三(上)第一次质量检测数学试卷 (理科)(解析版) 题型:选择题

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),则x>2时,f(x)单调递增,若x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省洛阳一中高三(上)期中数学考前选择题强化训练(解析版) 题型:选择题

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),则x>2时,f(x)单调递增,若x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省荆州中学高三(上)第一次质量检测数学试卷 (文科)(解析版) 题型:选择题

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),则x>2时,f(x)单调递增,若x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南省湘西州边城高级中学高三(上)月考数学试卷(解析版) 题型:选择题

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),则x>2时,f(x)单调递增,若x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省湘西州古丈县补习学校高三(上)第一次月考数学试卷(理科)(解析版) 题型:选择题

已知定义域为R的函数f(x)满足f(-x)=-f(x+4),则x>2时,f(x)单调递增,若x1+x2<4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

同步练习册答案