精英家教网 > 高中数学 > 题目详情
椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:,点A、B是它的两个焦点,当静止的小球放在点A处,从点A沿直线出发,经椭圆壁(非椭圆长轴端点)反弹后,回到点A时,小球经过的最短路程是( )
A.20
B.18
C.16
D.以上均有可能
【答案】分析:根据椭圆的光学性质可知,小球从点A沿直线出发,经椭圆壁反弹到B点继续前行碰椭圆壁后回到A点,所走的轨迹正好是两次椭圆上的点到两焦点距离之和,进而根据椭圆的定义可求得答案.
解答:解:依题意可知小球经两次椭圆壁后反弹后回到A点,
根据椭圆的性质可知所走的路程正好是4a=4×4=16
故选C
点评:本题主要考查了椭圆的应用.解题的关键是利用了椭圆的第一定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:
x2
16
+
y2
9
=1
,点A、B是它的两个焦点,当静止的小球放在点A处,从点A沿直线出发,经椭圆壁(非椭圆长轴端点)反弹后,回到点A时,小球经过的最短路程是(  )
A、20B、18
C、16D、以上均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:,点AB是它的两个焦点,当静止的小球放在点A处,从点A沿直线出发,经椭圆壁反弹后,再回到点A时,小球经过的最短路程是(    ).

         A.20                              B.18                              C.16                              D.以上均有可能

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高二上学期期末考试数学理卷 题型:选择题

椭圆满足这样的光学性质:从椭圆的一个焦点发射的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现有一个水平放置的椭圆形台球盘,满足方程,点是它的两个焦点.当静止的小球从点开始出发,沿直线运动,经椭圆壁反射后再回到点时,此时小球经过的路程可能是   (     ) 

A.32或4或        B.或28或    

C.28或4或     D.32或28或4

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:
x2
16
+
y2
9
=1
,点A、B是它的两个焦点,当静止的小球放在点A处,从点A沿直线出发,经椭圆壁(非椭圆长轴端点)反弹后,回到点A时,小球经过的最短路程是(  )
A.20B.18
C.16D.以上均有可能

查看答案和解析>>

同步练习册答案