精英家教网 > 高中数学 > 题目详情

已知f(x)在(-1,1)上有定义,f()=-1,且满足xy∈(-1,1)有f(x)+f(y)=f()

⑴证明:f(x)在(-1,1)上为奇函数;?

⑵对数列x1xn+1,求f(xn);?

⑶求证

见解析


解析:

(Ⅰ)证明:令xy=0,∴2f(0)=f(0),∴f(0)=0

y=-x,则f(x)+f(-x)=f(0)=0

f(x)+f(-x)=0   ∴f(-x)=-f(x)

f(x)为奇函数  4分

(Ⅱ)解:f(x1)=f()=-1,f(xn1)=f()=f()=f(xn)+f(xn)=2f(xn)

=2即{f(xn)}是以-1为首项,2为公比的等比数列

f(xn)=-2n1

(Ⅲ)解:

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(04年福建卷文)(14分)

已知f(x)=在区间[-1,1]上是增函数.

(Ⅰ)求实数a的值组成的集合A;

(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届甘肃天水一中高二下学期期末考试文科数学试卷(解析版) 题型:解答题

已知f(x)=在区间[-1,1]上是增函数.

(Ⅰ)求实数a的值组成的集合A;

(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省天水市高三第三次考试文科数学试卷(解析版) 题型:解答题

(本小题12分)已知f(x)=在区间[-1,1]上是增函数.

(Ⅰ)求实数a的值组成的集合A;

(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010年吉林省高二下学期期末考试理科数学卷 题型:解答题

已知f(x)=在区间[-1,1]上是增函数.

(Ⅰ)求实数a的值组成的集合A;(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.(12分)     

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=在区间[-1,1]上是增函数.

(Ⅰ)求实数a的值组成的集合A;

(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案