精英家教网 > 高中数学 > 题目详情
10.函数f(x)=(m2-m-1)xm是幂函数,且在x∈(0,+∞)上为增函数,则实数m的值为(  )
A.m=-1或m=2B.m=2C.m=-1D.m=-2

分析 因为只有y=xα型的函数才是幂函数,所以只有m2-m-1=1函数f(x)=(m2-m-1)xm才是幂函数,又函数f(x)=(m2-m-1)xm在x∈(0,+∞)上为增函数,所以幂指数应大于0.

解答 解:要使函数f(x)=(m2-m-1)xm是幂函数,且在x∈(0,+∞)上为增函数,
则 $\left\{\begin{array}{l}{{m}^{2}-m-1=1}\\{m>0}\end{array}\right.$,解得:m=2.
故选:B.

点评 本题考查了幂函数的概念及其单调性,解答的关键是掌握幂函数定义及性质,幂函数在幂指数大于0时,在(0,+∞)上为增函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列命题中的假命题是(  )
A.?x∈R,ex>0B.$?{x_0}∈{N^*},sin\frac{π}{2}{x_0}=1$
C.?x0∈R,lnx0<0D.?x∈N,x2>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.给出以下几个命题:
(1)命题“p∧q为真”是命题“p∨q为真”的必要不充分条件;
(2)命题“?x∈R,使得x2+x+1<0”的否定是:“对?x∈R,均有x2+x+1>0”;
(3)经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;
(4)在数列{an}中,a1=1,Sn是其前n项和,且满足Sn+1=$\frac{1}{2}{S_n}$+2,则{an}是等比数列;
(5)若函数f(x)=x3+ax2-bx+a2在x=1处有极值10,则a=4,b=11.
其中所有正确命题的序号是(3)(5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知命题P:关于x的不等式x2+2ax+4>0的解集为R,命题Q:函数f(x)=(5-2a)x为增函数.若P∨Q为真,P∧Q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,PA⊥面ABCD,PA=BC=4,AD=2,AC=AB=3,AD∥BC,N是PC的中点.
(Ⅰ)证明:ND∥面PAB;
(Ⅱ)求AN与面PND所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.p:|x-4|>2;q:x>1,则“¬p”是“q”的(  )条件.
A.充分不必要B.充分必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow{OA}$、$\overrightarrow{OB}$的夹角为60°,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,若$\overrightarrow{OC}=2\overrightarrow{OA}+\overrightarrow{OB}$,则$|\overrightarrow{OC}|$=2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=elnx,g(x)=$\frac{1}{e}$f(x)-x+1,h(x)=$\frac{1}{2}$x2
(1)求g(x)的极大值;
(2)证明:当x∈(0,+∞)时,h(x)≥f(x);
(3)当x∈(0,+∞)时,能否存在常数k,b,使h(x)≥kx+b,f(x)≤xk+b都成立,若存在,求出k,b,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=-x2+2x的定义域和值域分别是[m,n]和[3m,3n],则m+n=-1.

查看答案和解析>>

同步练习册答案