精英家教网 > 高中数学 > 题目详情
17.下列函数中与函数y=x0表示同一函数的是(  )
A.y=1B.y=$\frac{(\sqrt{x})^{2}}{x}$C.y=$\frac{x}{x}$D.y=$\frac{|x|+1}{|x|+1}$

分析 根据两个函数的定义域相同,对应关系也相同,是同一函数,对选项中的函数进行判断即可.

解答 解:∵y=x0的定义域为{x|x≠0},
对于A,y=1,定义域为R,
对于B:定义域为{x|x>0},
对于C:定义域为{x|x≠0},
对于D:定义域为R,
故选:C

点评 本题考查了判断两个函数是否为同一函数的问题,解题时应判断函数的定义域是否相同,对应关系是否也相同.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)是定义在R上的奇函数,且在区间[0,+∞)上单调递减.
(1)写出f(x)在R上的单调性(不用证明);
(2)若f(1-a)+f(2a-5)<0,请求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设等差数列{an}的公差为d,前n项和为Sn,若a1=d=1,则$\frac{{{S_n}+8}}{a_n}$的最小值$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.以下说法正确的是(  )
A.球的截面中过球心的截面面积未必最大
B.圆锥截去一个小圆锥后剩下来的部分是圆台
C.棱锥截去一个小棱锥后剩下来的部分是棱台
D.用两个平行平面去截圆柱,截得的中间部分还是圆柱

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆C1:x2+y2+4x-4y-3=0,点P为圆C2:x2+y2-4x-12=0上且不在直线C1C2上的任意一点,则△PC1C2的面积的最大值为(  )
A.$2\sqrt{5}$B.$4\sqrt{5}$C.$8\sqrt{5}$D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对于集合M,N,定义:M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M).设集合M={y|y=x2-4x+3,x∈R},N={y|y=-2x,x∈R},则M⊕N=(  )
A.(-∞,-1)∪[0,+∞)B.[-1,0)C.(-1,0]D.(-∞,-1]∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xoy中,直线l的参数方程为:$\left\{\begin{array}{l}x=a-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),以O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos2θ=sinθ,直线l与曲线C交于M,N两点(点M在点N的上方).
(Ⅰ)若a=0,求M,N两点的极坐标;
(Ⅱ)若P(a,0),且$|PM|+|PN|=8+2\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是边长为2的正方形,PD=DC,E,F分别是AB,PB的中点.
(1)求证:EF⊥CD;
(2)在平面PAD内求一点G,使FG⊥平面PCB,并证明你的结论;
(3)求三棱锥B-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数ft(x)=(x-t)2-t,t∈R,设f(x)=$\left\{{\begin{array}{l}{{f_a}(x),{f_a}(x)<{f_b}(x)}\\{{f_b}(x),{f_a}(x)≥{f_b}(x)}\end{array}}$,若0<a<b,则(  )
A.f(x)≥f(b)且当x>0时f(b-x)≥f(b+x)B.f(x)≥f(b)且当x>0时f(b-x)≤f(b+x)
C.f(x)≥f(a)且当x>0时f(a-x)≥f(a+x)D.f(x)≥f(a)且当x>0时f(a-x)≤f(a+x)

查看答案和解析>>

同步练习册答案