精英家教网 > 高中数学 > 题目详情
6.已知集合U={x|-3≤x≤3},M={x|-1<x<3},∁UN={x|0<x<2},那么集合N={x|-3≤x≤0或2≤x≤3},M∪(∁UN)={x|-1<x<3},M∪U={x|-3≤x≤3}.

分析 根据集合的基本运算进行求解即可.

解答 解:∵U={x|-3≤x≤3},M={x|-1<x<3},∁UN={x|0<x<2},
∴N={x|-3≤x≤0或2≤x≤3},
M∪(∁UN)={x|-1<x<3},
M∪U={x|-3≤x≤3},
故答案为:{x|-3≤x≤0或2≤x≤3},{x|-1<x<3},{x|-3≤x≤3}

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.将函数f(x)=sin4x+$\sqrt{3}$cos4x的图象上每个点的横坐标变为原来的4倍(纵坐标不变),再将所得的图象向左平移φ个单位后的图象所对应的函数恰为偶函数,则φ的值可以是(  )
A.$\frac{π}{6}$B.$\frac{π}{12}$C.$\frac{5π}{6}$D.$\frac{π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在数列{an}中,a1=-2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,则a2014=(  )
A.-2B.-$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$cosα=\frac{4}{5}$,$cos(α+β)=\frac{3}{5}$,α,β都是锐角,求sinβ..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设数列{an}是以1为首项,2为公差的等差数列,数列{bn}是以1为首项,2为公比的等比数列,则a${\;}_{{b}_{1}}$+a${\;}_{{b}_{2}}$+…+a${\;}_{{b}_{n}}$=2n+1-n-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若$\overrightarrow{a}$=(0,1,-1),$\overrightarrow{b}$=(1,1,0),且($\overrightarrow{a}$+λ$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则实数λ的值为(  )
A.-1B.0C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,矩形ABCD中,对角线AC、BD的交点为G,AD⊥平面ABE,AE⊥EB,AE=EB=BC=2,F为CE上的点,且BF⊥CE.
(Ⅰ) 求证:AE⊥平面BCE;
(Ⅱ)求三棱锥C-GBF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知半径为3的扇形的弧长为4π,则这个扇形的圆心角的弧度数为$\frac{4π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow a$=(sin$\frac{x}{6}$,cos$\frac{x}{6}$),$\overrightarrow b$=(cos$\frac{x}{3}$,sin$\frac{x}{3}$)且f(x)=$\overrightarrow a$•$\overrightarrow b$
(1)求f(x)的周期;
(2)求f(x)最大值和此时相应的x的值;
(3)求f(x)的单调增区间.

查看答案和解析>>

同步练习册答案