| A. | (x-1)2+(y-2)2=1 | B. | x2+(y-1)2=1 | C. | (x+1)2+(y-1)2=1 | D. | (x+2)2+(y-1)2=1 |
分析 设圆C2的圆心为(a,b),则由再根据垂直及中点在轴上这两个条件,求出圆心关于直线的对称点C2的坐标,即可求得关于直线对称的圆的方程.
解答 解:设圆C2的圆心为(a,b),则由$\left\{\begin{array}{l}{\frac{b+1}{a-3}×2=-1}\\{2×\frac{a+3}{2}-\frac{b-1}{2}-2=0}\end{array}\right.$,求得$\left\{\begin{array}{l}{a=-1}\\{b=1}\end{array}\right.$,
故圆C2的圆心(-1,1),且半径为1,故圆C2的方程为(x+1)2+(y-1)2=1,
故选:C.
点评 本题主要考查直线和圆的位置关系,求一个圆关于直线的对称圆的方程的方法,关键是求出圆心关于直线的
对称点的坐标,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 增函数 | B. | 减函数 | C. | 先增后减函数 | D. | 先减后增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{3}{2}$或0 | C. | -$\frac{2}{3}$ | D. | -$\frac{2}{3}$或0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{2}$-$\frac{y^2}{8}$=1 | B. | $\frac{x^2}{3}$-$\frac{y^2}{12}$=1 | C. | $\frac{y^2}{3}$-$\frac{x^2}{12}$=1 | D. | $\frac{y^2}{2}$-$\frac{x^2}{8}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{5}{36}$ | C. | $\frac{7}{36}$ | D. | $\frac{5}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com