精英家教网 > 高中数学 > 题目详情
选修4—1:几何证明选讲
D、E分别为△ABC的边AB、AC上的点,且不与△ABC的顶点重合。已知AE的长为,AC的长为,AD、AB的长是关于的方程的两个根。
(1)证明:C、B、D、E四点共圆;
(2)若∠A=90°,且,求C、B、D、E所在圆的半径。
(I)连接DE,根据题意在△ADE和△ACB中,
                
.又∠DAE=∠CAB,从而△ADE∽△ACB 因此∠ADE=∠ACB                                 
所以C,B,D,E四点共圆。
(Ⅱ)m="4," n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故  AD=2,AB=12.
取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.
由于∠A=900,故GH∥AB, HF∥AC. HF=AG=5,DF= (12-2)=5.
故C,B,D,E四点所在圆的半径为5
((I)做出辅助线,根据所给的AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.
(II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH,根据四点共圆得到半径的大小.
解:(I)连接DE,根据题意在△ADE和△ACB中,
AD×AB=mn=AE×AC,


又∠DAE=∠CAB,从而△ADE∽△ACB
因此∠ADE=∠ACB
∴C,B,D,E四点共圆.
(Ⅱ)m=4,n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.
故AD=2,AB=12.
取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.
∵C,B,D,E四点共圆,
∴C,B,D,E四点所在圆的圆心为H,半径为DH.
由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=(12-2)=5.
故C,B,D,E四点所在圆的半径为5
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知点M(1,-1),N(-1,1),则以线段MN为直径的圆的方程是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图所示,已知圆为圆上一动点,点上,点上,且满足的轨迹为曲线.
(1)求曲线的方程;
(2)若直线与(1)中所求点的轨迹交于不同两点是坐标原点,且,求△的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面的斜线 AB 交于点 B,过定点 A 的动直线与 AB 垂直,且交于点 C,则动 点 C 的轨迹是(  )
A.一条直线B.一个圆C.一个椭圆D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,从圆外一点作圆的两条切线,切点分别为交于点,设为过点且不过圆心的一条弦,求证:四点共圆.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以点(-2,3)为圆心且与y轴相切的圆的方程是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以点(-3,4)为圆心,且与轴相切的圆的标准方程是      ▲       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

圆心在轴上,且与直线相切于点的圆的方程为____ ________________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,点P在圆O直径AB的延长线上,且PB=OB=2,PC切圆O于C点,CDAB于D点,则CD=       

查看答案和解析>>

同步练习册答案