精英家教网 > 高中数学 > 题目详情
设函数f(x)=ex的反函数为g(x),点P(x1,y1),Q(x2,y2)分别为函数f(x)和g(x)图象上的两个动点.

(1)求函数h(x)=x2-g(x)的极小值;

(2)设函数f(x)的图象为C1,g(x)的图象为C2,过点P,Q的直线为l,当直线l为曲线C1和曲线C2的公切线时,求x1x2满足的关系式及x1的取值范围.

解:(1)∵f(x)=Ex,即y=Exx=lny,?

f(x)的反函数g(x)=lnx,h(x)=x2-lnx(x>0).                                                  ?

h′(x)=2x-,令h′(x)=0,解得x,?

又∵x>0,∴x=.?

当0<x时,h′(x)<0,∴h(x)在区间(0,)内为减函数;?

x时,h′(x)>0,∴h(x)在区间(,+∞)内为增函数;                                ?

故当x=时,函数h(x)取得极小值,且极小值为?

h()=()2-ln=-ln.                                                                   ?

(2)∵f′(x)=Ex,g′(x)=,又P(x1,Ex1),Q(x2,lnx2),

∴当直线l为曲线C1与曲线C2的公切线时,它的方程为y-Ex1=Ex1 (x-x1)                    ①?

y-lnx2=(x-x2),                                                                                     ②?

由①得,y=Ex1·x+Ex1(1-x1),由②得,y=·x+lnx2-1,

= Ex1x2= E-x1,即x2=E-x1.                                                                             ?

Ex1 (1-x1)=lnx2-1=lnE-x1-1Ex1(1-x1)=-x1-1Ex1=.?

又∵Ex1>0,∴>0x1<-1或x1>1.?

x1>1时, Ex1E,解E,可得x1,即1<x1,?

x1<-1时, Ex1,解,可得x1,?

x1<-1,?

x1∈(,-1)∪(1,).


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ex-
k2
x2-x

(1)若k=0,求f(x)的最小值;
(2)若当x≥0时f(x)≥1,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•四川)设函数f(x)=
ex+x-a
(a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
ex   (x≤0)
lnx (x>0)
,则f[f(
π
4
)]
=
π
4
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
ex      (x<0)
a+x  (x≥0)
为R上的连续函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•四川)设函数f(x)=
ex+x-a
(a∈R,e为自然对数的底数),若曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是(  )

查看答案和解析>>

同步练习册答案