分析 本题二次项系数含有参数,△=(a+2)2-4a=a2+4>0,故只需对二次项系数进行分类讨论.
解答 解:∵△=(a+2)2-4a=a2+4>0
解得方程 ax2+(a+2)x+1=0两根${x_1}=\frac{{-a-2-\sqrt{{a^2}+4}}}{2a}$,${x_2}=\frac{{-a-2+\sqrt{{a^2}+4}}}{2a}$
∴当a>0时,解集为$\left\{{x|x>\frac{{-a-2+\sqrt{{a^2}+4}}}{2a}或x<\frac{{-a-2-\sqrt{{a^2}+4}}}{2a}}\right\}$
当a=0时,不等式为2x+1>0,解集为$\left\{{x|x>-\frac{1}{2}}\right\}$
当a<0时,解集为$\left\{{x|\frac{{-a-2-\sqrt{{a^2}+4}}}{2a}<x<\frac{{-a-2+\sqrt{{a^2}+4}}}{2a}}\right\}$.
点评 本题考查二次不等式的解法,分类讨论思想的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1]∪(2,+∞) | B. | (-∞,0)∪(1,2) | C. | (1,2] | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| 第一扇门 | 第二扇门 | 第三扇门 | 第四扇门 |
| 1000 | 2000 | 3000 | 5000 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,2] | B. | [0,2] | C. | [-2,0] | D. | $[{\frac{9}{8},2}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com