精英家教网 > 高中数学 > 题目详情
已知函数y=loga(x+3)+
8
9
(a>0,a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b的图象上,则 b=
 
考点:对数函数的图像与性质
专题:函数的性质及应用
分析:先利用函数y=loga(x+3)+
8
9
的解析式得出其图象必过哪一个定点,再将该定点的坐标代入函数函数f(x)=3x+b式中求出b,问题得以解决.
解答: 解:∵令x+3=1,即x=-2,则y=
8
9

∴函数y=loga(x+3)+
8
9
(a>0,a≠1)的图象恒过定点A(-2,
8
9
),
将x=-2,y=
8
9
代入y=3x+b得:3-2+b=
8
9
,∴b=
7
9

故答案为:
7
9
点评:本题考查对数函数、指数函数的图象的图象与性质,考查数形结合的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x∈Z|x2-1≤0},B={x|x2-x-2=0},则A∩B=(  )
A、∅B、{-1}
C、{0}D、{2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x-5,(x≥6)
2x-4,(x<6)
,则f(3)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知如图,在四棱锥S-ABCD中,底面ABCD是菱形,AC与BD的交点为O,SO⊥平面ABCD,E为侧棱SC上一个动点.
(1)求证:平面SAC⊥平面BDE;
(2)若E为SC的中点,求证:SA∥平面BDE;
(3)若E为SC的中点,AB=SO=a,∠BAD=60°,求三棱锥S-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

统计表明,某种型号的汽车在匀速行驶中每小时的耗油量P(升)关于行驶速度x(千米/小时)的函数解析式为:P=
1
102400
x3-
3
80
x+a(0<x≤120).当汽车以40千米/小时的速度匀速行驶时,每小时耗油
57
8
升.
(Ⅰ)求实数a的值;
(Ⅱ)已知甲、乙两地相距100千米,汽油的价格是8元/升,司机每小时的工资是16元,当汽车以多大速度行驶时,从甲地到乙地的总费用最少?最少是多少元?.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
m
+
y2
m-1
=1(2≤m≤5),过其左焦点且斜率为1的直线与椭圆及其准线交于A、B、C、D,设f (m)=||AB|-|CD||. 
(1)求直线AB的方程;
(2)求f(m)的解析式;
(3)求f(m)的最大、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-m|-2|x-1|(m∈R),解不等式f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方形OABC的边长为1cm,它是水平放置的一个平面图形的直观图,则原图形的周长是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,AB=4,AC=4
2
,∠BAC=45°,以AC的中线BD为折痕,将△ABD沿BD折起,构成二面角A-BD-C.在面BCD内作CE⊥CD,且CE=
2

(Ⅰ)求证:CE∥平面ABD;
(Ⅱ)如果二面角A-BD-C的大小为90°,求二面角B-AC-E的余弦值.

查看答案和解析>>

同步练习册答案