12£®£¨1£©Èô²»µÈʽ$sin£¨2x+\frac{¦Ð}{3}£©-\frac{1}{a}£¾0$¶Ô$x¡Ê[\frac{¦Ð}{6}£¬\frac{¦Ð}{2}]$µÄËùÓÐʵÊýx¶¼³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£»
£¨2£©Èô²»µÈʽx2-2ax+2a+1£¾0¶Ô0¡Üx¡Ü1µÄËùÓÐʵÊýx¶¼³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£»
£¨3£©Éèa£¾0ÇÒa¡Ù1£¬f£¨x£©=x2-ax£¬¶Ôx¡Ê£¨-1£¬1£©£¬¾ùÓÐ$f£¨x£©£¼\frac{1}{2}$£¬ÇóaµÄ·¶Î§£®
£¨4£©Íê³ÉÌî¿Õ
ÓÃͼÏóÓïÑÔ±íÊöÓú¯Êý×îÖµ±íÊö
ÔÚ£¨a£¬b£©ÄÚ£¬Èô¶ÔÈÎÒâµÄxÓÐf£¨x£©£¾g£¨x£©³ÉÁ¢¢Ù¢Ú
ÔÚ£¨a£¬b£©ÄÚ£¬Èô´æÔÚx0£¬Ê¹f£¨x£©£¾g£¨x£©³ÉÁ¢¢Û¢Ü

·ÖÎö £¨1£©ÓÉ$x¡Ê[\frac{¦Ð}{6}£¬\frac{¦Ð}{2}]$£¬¿ÉµÃ$£¨2x+\frac{¦Ð}{3}£©$¡Ê$[\frac{2¦Ð}{3}£¬\frac{4¦Ð}{3}]$£¬ÓÚÊÇ$sin£¨2x+\frac{¦Ð}{3}£©$¡Ê$[-\frac{\sqrt{3}}{2}£¬1]$£¬Òò´Ë$\frac{1}{a}$£¼$-\frac{\sqrt{3}}{2}$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©²»µÈʽx2-2ax+2a+1£¾0»¯Îªa£¨2-2x£©+x2+1£¾0£¬ÓÉÓÚ¶Ô0¡Üx¡Ü1µÄËùÓÐʵÊýx¶¼³ÉÁ¢£¬ÀûÓÃÒ»´Îº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
£¨3£©²»µÈʽ$f£¨x£©£¼\frac{1}{2}$£¬»¯Îªu£¨x£©=x2-$\frac{1}{2}$£¼ax£®»­³öͼÏ󣬼´¿ÉµÃ³ö£®
£¨4£©·Ö±ð»­³öº¯Êýf£¨x£©Óëg£¨x£©µÄͼÏ󣬼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ß$x¡Ê[\frac{¦Ð}{6}£¬\frac{¦Ð}{2}]$£¬¡à$£¨2x+\frac{¦Ð}{3}£©$¡Ê$[\frac{2¦Ð}{3}£¬\frac{4¦Ð}{3}]$£¬
¡à$sin£¨2x+\frac{¦Ð}{3}£©$¡Ê$[-\frac{\sqrt{3}}{2}£¬1]$£¬
¡à$\frac{1}{a}$£¼$-\frac{\sqrt{3}}{2}$£¬
½âµÃ$-\frac{2\sqrt{3}}{3}$£¼a£¼0£®
¡àaµÄȡֵ·¶Î§ÊÇ$£¨-\frac{2\sqrt{3}}{3}£¬0£©$£®
£¨2£©²»µÈʽx2-2ax+2a+1£¾0»¯Îªa£¨2-2x£©+x2+1£¾0£¬
¡ß¶Ô0¡Üx¡Ü1µÄËùÓÐʵÊýx¶¼³ÉÁ¢£¬
¡à$\left\{\begin{array}{l}{2a+1£¾0}\\{2£¾0}\end{array}\right.$£¬½âµÃ$a£¾-\frac{1}{2}$£®
£¨3£©²»µÈʽ$f£¨x£©£¼\frac{1}{2}$£¬»¯Îªu£¨x£©=x2-$\frac{1}{2}$£¼ax£®»­³öͼÏ󣺵±1£¼aʱ£¬¿ÉµÃ£º£¨-1£©2-$\frac{1}{2}$£¼a-1£¬½âµÃ1£¼a£¼2£»Í¬Àí¿ÉµÃ£ºµ±0£¼a£¼1ʱ£¬${1}^{2}-\frac{1}{2}$£¼a1£¬½âµÃ$\frac{1}{2}£¼a£¼1$£®
×ÛÉϿɵÃaµÄȡֵ·¶Î§ÊÇ£º$£¨\frac{1}{2}£¬1£©$¡È£¨1£¬2£©£®
£¨4£©¢ÙÈçͼËùʾ£¬ÔÚÇø¼ä£¨a£¬b£©ÄÚ£¬º¯Êýy=f£¨x£©µÄͼÏóÔÚº¯Êýy=g£¨x£©µÄͼÏóµÄÉÏ·½£»
¢Úº¯Êý[f£¨x£©-g£¨x£©]min£¾0£®
¢ÛÈçͼËùʾ£¬´æÔÚx0¡Ê£¨a£¬b£©£¬Ê¹µÃº¯Êýy=f£¨x£©µÄͼÏóÔÚx=x0µÄµãÔÚº¯Êýy=g£¨x£©µÄͼÏóÖÐx=x0µãµÄÉÏ·½£»
¢Ü´æÔÚx0¡Ê£¨a£¬b£©£¬f£¨x0£©-g£¨x0£©£¾0£®

µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄͼÏóÓëÐÔÖÊ£¬¿¼²éÁËÊýÐνáºÏ˼Ïë·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÅжÏÏÂÁк¯ÊýµÄÆæÅ¼ÐÔ£º
£¨1£©f£¨x£©=x+3x3
£¨2£©f£¨x£©=£¨x-2£©£¨x+2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖª¼¯ºÏA={x||x-1¡Ü1}£¬B={x|y=$\sqrt{1-3x}$}£¬ÔòA¡ÉB=[0£¬$\frac{1}{3}$]£¬£¨∁RA£©¡ÈB=£¨-¡Þ£¬$\frac{1}{3}$]¡È£¨2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÉèM={$\overrightarrow{a}$|$\overrightarrow{a}$=£¨2£¬0£©+m£¨0£¬1£©£¬m¡ÊR}ºÍN={$\overrightarrow{b}$|$\overrightarrow{b}$£¨1£¬1£©+n=£¨1£¬-1£©£¬n¡ÊR}¶¼ÊÇÔªËØÎªÏòÁ¿µÄ¼¯ºÏ£¬ÔòM¡ÉNµÈÓÚ£¨¡¡¡¡£©
A£®{£¨1£¬0£©}B£®{£¨-1£¬1£©}C£®{£¨2£¬0£©}D£®{£¨2£¬1£©}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®º¯Êýy=-x2+2xµÄͼÏóÏò×óƽÐÐÒÆ¶¯4¸öµ¥Î»£¬ÏòÉÏÆ½ÐÐÒÆ¶¯1¸öµ¥Î»£¬ËùµÃͼÏó¶ÔÓ¦µÄº¯Êý½âÎöʽÊÇy=-x2-6x-7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÉèaΪʵ³£Êý£¬ÊÔÇóº¯Êýf£¨x£©=|sinx£¨a+cosx£©|£¨x¡ÊR£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®£¨1£©ÈôÅ×ÎïÏߵĽ¹µãÔÚyÖáÉÏ£¬µã A£¨m£¬-2£©ÔÚÅ×ÎïÏßÉÏ£¬ÇÒ|AF|=3£¬ÇóÅ×ÎïÏߵıê×¼·½³Ì¼°¡÷O AFµÄÃæ»ý£®
£¨2£©ÒÔÍÖÔ²$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{5}$=1µÄ³¤Öá¶ÌµãΪ½¹µã£¬ÇÒ¾­¹ý£¨3£¬$\sqrt{10}$£©µÄË«ÇúÏߵıê×¼·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®º¯Êýf£¨x£©=log0.5£¨x-1£©µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
A£®£¨-1£¬+¡Þ£©B£®£¨1£¬+¡Þ£©C£®£¨0£¬+¡Þ£©D£®£¨-¡Þ£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªËÄÃæÌåABCDµÄ²àÃæÕ¹¿ªÍ¼ÈçͼËùʾ£¬ÔòÆäÌå»ýΪ$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸