精英家教网 > 高中数学 > 题目详情
双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且同向.
(1)求双曲线的离心率;
(2)设AB被双曲线所截得的线段的长为4,求双曲线的方程.
解:(1)设双曲线方程为
同向,
∴渐近线的倾斜角为(0,),
∴渐近线斜率为:
∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)2|AB|,∴

可得:
而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=
而由对称性可知:OA的斜率为k=tan


(2)由第(1)知,a=2b,可设双曲线方程为=1,c=b,
∴AB的直线方程为 y=﹣2(x﹣b),
代入双曲线方程得:15x2﹣32bx+84b2=0,
∴x1+x2=,x1x2=
4=,16=
∴b2=9,所求双曲线方程为:=1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知|
OA
|、|
AB
|、|
OB
|成等差数列,且
BF
FA
同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直l1的直线分别交l1,l2于A,B两点,己知|
OA
|,|
AB
|,|
OB
|
成等差数列,且
BF
FA
同向,则双曲线的离心率
 

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知成等差数列,且同向,
(Ⅰ)求双曲线的离心率;
(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程。

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1、l2,经过右焦点F垂直于l1的直线分别交l1、l2于A、B两点。已知成等差数列,且同向。
(1)求双曲线的离心率;
(2)设AB被双曲线所截得的线段的长为4,求双曲线的方程。

查看答案和解析>>

科目:高中数学 来源:2008年全国统一高考数学试卷Ⅰ(理科)(解析版) 题型:解答题

双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.

查看答案和解析>>

同步练习册答案