精英家教网 > 高中数学 > 题目详情
函数y=
-cosx
+
tanx
的定义域是
[π+2kπ,
2
+2kπ)(k∈Z)
[π+2kπ,
2
+2kπ)(k∈Z)
分析:要使函数有意义,则根据负数不能开偶次方根,即由
-cosx≥0
tanx≥0
求解.
解答:解:要使函数有意义,
-cosx≥0
tanx≥0
2kπ+
π
2
≤x≤2kπ+ 
2
kπ≤x<kπ+ 
π
2
(k∈Z),
所以2kπ+π≤x<2kπ+
2
(k∈Z).
所以原函数的定义域是[π+2kπ,
2
+2kπ)(k∈Z)

故答案为:[π+2kπ,
2
+2kπ)(k∈Z)
点评:本题主要考查了定义域的常见类型一是对数函数真数大于零,二是负数不能开偶次根,三是分母能为零,涉及到三角不等式的解法,要多借助图象.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若把一个函数的图象按向量
a
=(-
π
3
,-2)平移后得到函数y=cosx的图象,则原函数图象的解析式为(  )
A、y=cos(x+
π
3
)+2
B、y=cos(x-
π
3
)-2
C、y=cos(x+
π
3
)-2
D、y=cos(x-
π
3
)+2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=cosx-sin2x-cos2x+
7
4
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=cosx(x∈[0,2π])的单调递减区间是
[0,π]
[0,π]

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=(cosx-
1
2
)2-3
的最大值与最小值分别是(  )
A、-
11
4
,-3
B、-3,-
11
4
C、-
11
4
,-
3
4
D、-
3
4
,-3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=|cosx|+cosx的值域为
 

查看答案和解析>>

同步练习册答案