精英家教网 > 高中数学 > 题目详情

【题目】若a<b<c,则函数f(x)=(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)的两个零点分别位于区间(
A.(a,b)和(b,c)内
B.(﹣∞,a)和(a,b)内
C.(b,c)和(c,+∞)内
D.(﹣∞,a)和(c,+∞)内

【答案】A
【解析】解:∵a<b<c,∴f(a)=(a﹣b)(a﹣c)>0,f(b)=(b﹣c)(b﹣a)<0,f(c)=(c﹣a)(c﹣b)>0,
由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;
又函数f(x)是二次函数,最多有两个零点,
因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内.
故选A.
由函数零点存在判定定理可知:在区间(a,b),(b,c)内分别存在一个零点;又函数f(x)是二次函数,最多有两个零点,即可判断出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义区间(a,b)、[a,b)、(a,b]、[a,b]的长度均为d=b﹣a,用[x]表示不超过x的最大整数,例如[3.2]=3,[﹣2.3]=﹣3.记{x}=x﹣[x],设f(x)=[x]{x},g(x)=x﹣1,若用d表示不等式f(x)<g(x)解集区间长度,则当0≤x≤3时有(
A.d=1
B.d=2
C.d=3
D.d=4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线y=e5x+2在点(0,3)处的切线方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数对序列P:(a1 , b1),(a2 , b2),…,(an , bn),记T1(P)=a1+b1 , Tk(P)=bk+max{Tk1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk1(P),a1+a2+…+ak}表示Tk1(P)和a1+a2+…+ak两个数中最大的数,
(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;
(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;
(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2,3,4},B={2,4,6},则A∩B的元素个数(
A.0个
B.2个
C.3个
D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若(2x﹣3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5 , 则a1+2a2+3a3+4a4+5a5等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】六个人从左到右排成一行,最右端只能排甲或乙,最左端不能排乙,则不同的排法种数共有(
A.192
B.216
C.240
D.288

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|3≤3x≤27},B={x|log2x<1}
(1)分别求A∩B,A∪B
(2)已知集合C={x|1<x<a},若CA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将5本不同的数学用书放在同一层书架上,则不同的放法有(
A.50
B.60
C.120
D.90

查看答案和解析>>

同步练习册答案