精英家教网 > 高中数学 > 题目详情
20.在△ABC中,D是边AB上的中点,记$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{BA}$=$\overrightarrow{c}$,则向量$\overrightarrow{CD}$=(  )
A.-$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{c}$B.$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{c}$C.-$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{c}$D.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{c}$

分析 根据向量加减的几何意义即可求出.

解答 解:∵D为AB的中点,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{BA}$=$\overrightarrow{c}$,
∴$\overrightarrow{CD}$=$\overrightarrow{CB}$+$\overrightarrow{BD}$=-$\overrightarrow{BC}$+$\frac{1}{2}$$\overrightarrow{BA}$=-$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{c}$,
故选:C.

点评 本题考查了向量的加减的几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若圆(x-3)2+(y+5)2=r2上的点到直线4x-3y-2=0的最短距离等于1,则半径r的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线$\frac{{x}^{2}}{m}-\frac{{y}^{2}}{3+m}$=1的一个焦点为(2,0),则m的值为(  )
A.$\frac{1}{2}$B.1或3C.$\frac{1+\sqrt{2}}{2}$D.$\frac{\sqrt{2}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(理科)设A在平面BCD内的射影是直角三角形BCD的斜边BD的中点O,AC=BC=1,CD=$\sqrt{2}$,
求(1)AC与平面BCD所成角的大小;
(2)二面角A-BC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义运算:$a?b=\left\{\begin{array}{l}a,(a>b)\\ b,(a<b)\end{array}\right.$,例如2?3=3,则下列等式不能成立的是(  )
A.(a?b)2=a2?b2B.(a?b)?c=a?(b?c)
C.(a?b)2=(b?a)2D.c•(a?b)=(c•a)?(c•b)(c>0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知sinα-cosα=$\frac{1}{5}$,则sin2α=$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知集合{a,b,c}={0,1,3},且下列三个关系:①a≠3;②b=3;③c≠0有且只有一个正确,则10a+5b+c等于31.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知正三棱锥A-BCD的外接球半径R=$\frac{\sqrt{3}}{2}$,P,Q分别是AB,BC上的点,且满足$\frac{AP}{PB}$=$\frac{CQ}{QB}$=5,DP⊥PQ,则该正三棱锥的高为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列中{an}中,a1=2,a4=9,{bn}是等比数列,且bn=an-1
(1)求{an}的通项公式;
(2)求{an}的前n项和.

查看答案和解析>>

同步练习册答案