精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x),g(x)满足f(x)=-f(-x),g(x)=g(x+2),若f(-1)=g(1)=3且g(2nf(1))=nf(f(1)+g(-1))+2(n∈N),则g(-6)+f(0)=   
【答案】分析:由f(x)=-f(-x),得f(0)=0,f(1)=-3,由g(x)=g(x+2),得g(-1)=3,从而可化g(2nf(1))=nf(f(1)+g(-1))+2,得g(-6n)=2(n∈N),由此可求得答案.
解答:解:由f(x)=-f(-x)得,f(0)=-f(0),即f(0)=0,f(1)=-f(-1)=-3,
由g(x)=g(x+2),得g(-1)=g(-1+2)=g(1)=3,
则由g(2nf(1))=nf(f(1)+g(-1))+2,得g(2n(-3))=nf(-3+3)+2=nf(0)+2=2,即g(-6n)=2(n∈N),
所以g(-6)+f(0)=2+0=2,
故答案为:2.
点评:本题考查函数的奇偶性、周期性,考查函数值的求解,考查学生灵活运用知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案