精英家教网 > 高中数学 > 题目详情
正方体,ABCD-A1B1C1D1中,直线A1B与平面A1ACC1所成的角为(  )
A、30B、45C、60°D、900
分析:取BC的中点O,连接BO,OA1由正方体的性质可知BO⊥平面AA1C1C,从而可得∠BA1O即为直线与平面所成的角在Rt△BOA1中由sin∠BA1O=
OB
BA1
可求
解答:精英家教网解:取BC的中点O,连接BO,OA1由正方体的性质可得BO⊥AC,BO⊥AA1且AA1∩AC=A
∴BO⊥平面AA1C1C
∴∠BA1O即为直线与平面所成的角
设正方体的棱长为a,则OB=
2
2
a      BA1=
2
a

在Rt△BOA1sin∠BA1O=
OB
BA1
=
2
a
2
2
a
=
1
2

∴∠BA1O=30°
故选A.
点评:本题主要考查了直线与平面所成的角,其一般步骤是:①找(做)出已知平面的垂线②给出所要求解的线面角 ③在直角三角形中进行求解;解决本题的关键是要熟练掌握正方体的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,正方体ABCD-A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:
①平面MENF⊥平面BDD′B′;
②当且仅当x=
12
时,四边形MENF的面积最小;
③四边形MENF周长l=f(x),x∈0,1]是单调函数;
④四棱锥C′-MENF的体积v=h(x)为常函数;
以上命题中真命题的序号为
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

棱长为a的正方体A1B1C1D1-ABCD中,O为面ABCD的中心.
(1)求证:AC1⊥平面B1CD1
(2)求四面体OBC1D1的体积;
(3)线段AC上是否存在P点(不与A点重合),使得A1P∥面CC1D1D?如果存在,请确定P点位置,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A'B'C'D'中,棱长为2,则异面直线A1B1与BC1的距离是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正方体ABCD-A′B′C′D′的棱长为1,E、F 分别是棱AA',CC'的中点,过直线E、F的平面分别与棱BB′,DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:
①当且仅当x=0时,四边形MENF的周长最大;
②当且仅当x=
1
2
时,四边形MENF的面积最小;
③四棱锥C′-MENF的体积V=h(x)为常函数;
④正方体ABCD-A′B′C′D′被截面MENF平分成等体积的两个多面体.
以上命题中正确命题的个数(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥的底面半径为r,高为h,正方体ABCD-A′B′C′D′内接于圆锥,求这个正方体的棱长.

查看答案和解析>>

同步练习册答案