【题目】如图,在四棱锥
中,底面
为平行四边形,
平面
,![]()
![]()
在棱
上.
![]()
(I)当
时,求证
平面![]()
(II)当二面角
的大小为
时,求直线
与平面
所成角的正弦值.
【答案】(Ⅰ)证明见解析;(Ⅱ)
.
【解析】
(Ⅰ)在平行四边形
中,
由
,
,
,
易知
,
又
平面
,所以
平面
,∴
,
在直角三角形
中,易得
,
在直角三角形
中,
,
,又
,∴
,
可得![]()
.
∴
,
又∵
,∴
平面
.
(Ⅱ)由(Ⅰ)可知,
,
,
可知
为二面角
的平面角,
,此时
为
的中点.
过
作
,连结
,则平面
平面
,
作
,则
平面
,连结
,
可得
为直线
与平面
所成的角.
因为
,
,
所以
.
在
中,
,
直线
与平面
所成角的正弦值为
.
解法二:依题意易知
,
平面ACD.以A为坐标原点,AC、AD、SA分别为
轴建立空间直角坐标系,则易得
,
![]()
(Ⅰ)由
有
,
易得
,从而
平面
.
(Ⅱ)由
平面
,二面角
的平面角
.
又
,则
为
的中点,
即
,
设平面
的法向量为![]()
则
,令
,得
,
从而
,
直线
与平面
所成角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱
中,
,点
分别为棱
的中点.
(Ⅰ)求证:
∥平面![]()
(Ⅱ)求证:平面
平面
;
(Ⅲ)在线段
上是否存在一点
,使得直线
与平面
所成的角为300?如果存在,求出线段
的长;如果不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
为参数),在以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,点
的极坐标为
,直线
的极坐标方程为
.
(1)求直线
的直角坐标方程与曲线
的普通方程;
(2)若
是曲线
上的动点,
为线段
的中点,求点
到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经济订货批量模型,是目前大多数工厂、企业等最常采用的订货方式,即某种物资在单位时间的需求量为某常数,经过某段时间后,存储量消耗下降到零,此时开始订货并随即到货,然后开始下一个存储周期,该模型适用于整批间隔进货、不允许缺货的存储问题,具体如下:年存储成本费
(元)关于每次订货
(单位)的函数关系
,其中
为年需求量,
为每单位物资的年存储费,
为每次订货费. 某化工厂需用甲醇作为原料,年需求量为6000吨,每吨存储费为120元/年,每次订货费为2500元.
(1)若该化工厂每次订购300吨甲醇,求年存储成本费;
(2)每次需订购多少吨甲醇,可使该化工厂年存储成本费最少?最少费用为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知表1和表2是某年部分日期的天安门广场升旗时刻表.
表1:某年部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:31 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:59 | 12月20日 | 7:31 |
表2:某年2月部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15/p> | 2月19日 | 7:02 | 2月28日 | 6:49 |
(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;
(2)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记
为这两人中观看升旗的时刻早于7:00的人数,求
的分布列和数学期望
.
(3)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为
).记表2中所有升旗时刻对应数据的方差为
,表1和表2中所有升旗时刻对应数据的方差为
,判断
与
的大小(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
经过点
,长轴长是短轴长的2倍.
(1)求椭圆
的方程;
(2)设直线
经过点
且与椭圆
相交于
两点(异于点
),记直线
的斜率为
,直线
的斜率为
,证明:
为定值,并求出该定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com