精英家教网 > 高中数学 > 题目详情
函数为可导函数,则“在区间(a,b)单调递增”是“在区间(a,b)成立”的
[     ]
A.充分不必要条件
B.必要不充分条件
C.充分且必要条件
D.既不充分也不必要条件
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、已知函数f(x)与g(x)是定义在R上的两个可导函数,若f(x)、g(x)满足f′(x)=g′(x),则下列说法正确的是
②④
(填序号).
①f(x)=g(x);                   ②f(x)-g(x)为常数函数;
③f(x)+g(x)为常数函数;         ④f(x)和g(x)的图象没有公共点或重合.

查看答案和解析>>

科目:高中数学 来源: 题型:

设R上的可导函数f(x)满足f(x+y)=f(x)+f(y)+4xy(x,y∈R),且f'(1)=2,则方程f'(x)=0的根为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(m,n)上的可导函数f(x)的导数为f'(x),若当x∈[a,b]?(m,n)时,有|f'(x)|≤1,则称函数f(x)为[a,b]上的平缓函数.下面给出四个结论:
①y=cosx是任何闭区间上的平缓函数;
②y=x2+lnx是[
1
2
,1]
上的平缓函数;
③若f(x)=
1
3
x3-mx2-3m2x+1是[0,
1
2
]上的平缓函数,则实数m的取值范围是[-
3
3
1
2
]

④若y=f(x)是[a,b]上的平缓函数,则有|f(a)-f(b)|≤|a-b|.
这些结论中正确的是
①③④
①③④
(多填、少填、错填均得零分).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在(m,n)上的可导函数f(x)的导数为f'(x),若当x∈[a,b]?(m,n)时,有|f'(x)|≤1,则称函数f(x)为[a,b]上的平缓函数.下面给出四个结论:
①y=cosx是任何闭区间上的平缓函数;
②y=x2+lnx是[
1
2
,1]
上的平缓函数;
③若f(x)=
1
3
x3-mx2-3m2x+1是[0,
1
2
]上的平缓函数,则实数m的取值范围是[-
3
3
1
2
]

④若y=f(x)是[a,b]上的平缓函数,则有|f(a)-f(b)|≤|a-b|.
这些结论中正确的是______(多填、少填、错填均得零分).

查看答案和解析>>

同步练习册答案