精英家教网 > 高中数学 > 题目详情
已知M(a,b),N(sinωx,cosωx)(ω>0),记f(x)=
OM
ON
(O为坐标原点).若f(x)的最小正周期为2,并且当x=
1
3
时,f(x)的最大值为5.
(1)求函数f(x)的表达式;
(2)对任意的整数n,在区间(n,n+1)内是否存在曲线y=f(x)的对称轴?若存在,求出此对称轴方程;若不存在,说明理由.
(1)由题设条件知f(x)=asinωx+bcosωx=5sin(ωx+φ),
由已知得
ω
=2
f(
1
3
)=5
,得ω=π,φ=
π
6

所以f(x)=5sin(πx+
π
6
),.
(2)曲线f(x) 有对称轴x=x0的充要条件是5sin(πx0+
π
6
)=±5.即πx0+
π
6
=kπ+
π
2
即x0=k+
1
3
,k∈Z,
令n<k+
1
3
<n+1 得k=n (n∈Z),
所以在区间(n,n+1)内存在曲线f(x)的对称轴,
其方程是x=n+
1
3
,n∈Z,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知M(a,b),N(sinωx,cosωx)(ω>0),记f(x)=
OM
ON
(O为坐标原点).若f(x)的最小正周期为2,并且当x=
1
3
时,f(x)的最大值为5.
(1)求函数f(x)的表达式;
(2)对任意的整数n,在区间(n,n+1)内是否存在曲线y=f(x)的对称轴?若存在,求出此对称轴方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M(a,b)由
x≥0
y≥0
x+y≤4
确定的平面区域内,N(a+b,a-b)所在平面区域的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知M(a,b),N(sinωx,cosωx)(ω>0),记f(x)=数学公式(O为坐标原点).若f(x)的最小正周期为2,并且当x=数学公式时,f(x)的最大值为5.
(1)求函数f(x)的表达式;
(2)对任意的整数n,在区间(n,n+1)内是否存在曲线y=f(x)的对称轴?若存在,求出此对称轴方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年高三备考数学好题系列(09)(解析版) 题型:解答题

已知M(a,b),N(sinωx,cosωx)(ω>0),记f(x)=(O为坐标原点).若f(x)的最小正周期为2,并且当x=时,f(x)的最大值为5.
(1)求函数f(x)的表达式;
(2)对任意的整数n,在区间(n,n+1)内是否存在曲线y=f(x)的对称轴?若存在,求出此对称轴方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案