精英家教网 > 高中数学 > 题目详情
17.在△ABC所在平面内一点P,满足$\overrightarrow{AP}=\frac{2}{5}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}$,延长BP交AC于点D,若$\overrightarrow{AD}=λ\overrightarrow{AC}$,则λ=$\frac{1}{3}$.

分析 用特殊值法,不妨设△ABC是等腰直角三角形,腰长AB=AC=1,建立直角坐标系,利用坐标法和向量共线,求出点D的坐标,即可得出λ的值.

解答 解:根据题意,不妨设△ABC是等腰直角三角形,
且腰长AB=AC=1,
建立直角坐标系,如图所示,
则A(0,0),B(1,0),C(0,1),
∴$\overrightarrow{AB}$=(1,0),$\overrightarrow{AC}$=(0,1);
∴$\overrightarrow{AP}$=$\frac{2}{5}$$\overrightarrow{AB}$+$\frac{1}{5}$$\overrightarrow{AC}$=($\frac{2}{5}$,$\frac{1}{5}$),
∴$\overrightarrow{BP}$=$\overrightarrow{AP}$-$\overrightarrow{AB}$=(-$\frac{3}{5}$,$\frac{1}{5}$);
设点D(0,y),
则$\overrightarrow{BD}$=(-1,y),
由$\overrightarrow{BP}$、$\overrightarrow{BD}$共线,得y=$\frac{1}{3}$,
∴$\overrightarrow{AD}$=(0,$\frac{1}{3}$),$\overrightarrow{AC}$=(0,1),
当$\overrightarrow{AD}=λ\overrightarrow{AC}$时,
λ=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查平面向量的基本定理及其意义,也考查了转化思想与运算求解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.函数$f(x)=\frac{x^2}{2}-klnx,k>0$的单调增区间为$({\sqrt{k},+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个几何体的三视图如图所示(单位:cm),则该几何体的表面积是(  )
A.4cm2B.$\frac{43}{2}$cm2C.23cm2D.24cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于3,则这样的直线(  )
A.有且仅有一条B.有且仅有两条C.有无穷多条D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“k=1”是“直线$kx-y-3\sqrt{2}=0$与圆x2+y2=9相切”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.△ABC是球的一个截面的内接三角形,其中AB=18,BC=24、AC=30,球心到这个截面的距离为球半径的一半,则球的半径等于(  )
A.10B.$10\sqrt{3}$C.15D.$15\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线x+y+m=0与圆x2+y2=m相切,则m的值是(  )
A.0或2B.2C.$\sqrt{2}$D.$\sqrt{2}$或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=ex(e是自然对数的底数)在点(0,1)处的切线方程是(  )
A.y=x-1B.y=x+1C.y=-x-1D.y=-x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在平面四边形ABCD中,$\overrightarrow{BA}•\overrightarrow{BC}=32$.
(1)若$\overrightarrow{BA}$与$\overrightarrow{BC}$的夹角为30°,求△ABC的面积S△ABC
(2)若$|{\overrightarrow{AC}}|=4,O$为AC的中点,G为△ABC的重心(三条中线的交点),且$\overrightarrow{OG}$与$\overrightarrow{OD}$互为相反向量,求$\overrightarrow{AD}•\overrightarrow{CD}$的值.

查看答案和解析>>

同步练习册答案