精英家教网 > 高中数学 > 题目详情
已知高为1的梯形ABCD内接于半径为1的圆O,若梯形的上底CD=1,则(
OA
+
OB
OC
=(  )
A、0
B、
3
2
C、
2
3
-3
2
D、
3-2
3
2
考点:平面向量数量积的运算
专题:平面向量及应用
分析:如图所示,建立直角坐标系.则C(
1
2
,1)
O(0,1-
3
2
)
OC
=(
1
2
3
2
)
.
OA
+
OB
=2
OE
,即可得出.
解答: 解:如图所示,建立直角坐标系.
则C(
1
2
,1)
O(0,1-
3
2
)
OC
=(
1
2
3
2
)

OA
+
OB
=2
OE
=(0,
3
-2)

∴(
OA
+
OB
OC
=(0,
3
-2)
(
1
2
3
2
)
=
3-2
3
2

故选:D.
点评:本题考查了向量的坐标运算及其数量积运算,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin
5
6
π,4a,cos
11
3
π三个数成等比数列,则a=(  )
A、-
1
2
B、
1
2
C、-
2
3
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,
CA
CB
=c2-(a-b)2,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{bn}是递增的等差数列,已知b1+b2+b3=6,b1b2b3=
7
2
,求等差数列{bn}的通项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Rt△ABC中,∠B=90°,BA=BC=2,E,F分别是AB,AC的中点,把△AEF沿EF折起,使得点A至点P的位置,如图所示
(1)若PC=
6
,证明:PE⊥FC;
(2)若PB与平面BCFE所成角为30°,求平面PBE与平面PCF所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=xn(x∈N)在点P(
2
,(
2
n)处的切线的斜率为20,则n为(  )
A、7B、6C、5D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为正实数,函数f(x)=aex的图象与y轴的交点为A,函数g(x)=ln
x
a
的图象与x轴的交点为B,若点A和函数g(x)=ln(
x
a
)的图象上任意一点的连线的长度的最小值为AB,求正实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面ABB1A1为圆柱OO1的轴截面,点C为底面圆周上异于A,B的任意一点.
(Ⅰ)求证:BC⊥平面A1AC;
(Ⅱ)若D为AC的中点,求证:A1D∥平面O1BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=
1
2
AB=2,点E为AC中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(1)在CD上找一点F,使AD∥平面EFB;
(2)求点C到平面ABD的距离.

查看答案和解析>>

同步练习册答案