精英家教网 > 高中数学 > 题目详情
定义
n
p1+p2+…+pn
为n个正数p1,p2,…pn的“均倒数”.若已知数列{an}的前n项的“均倒数”为
1
2n+1
,又bn=
an+1
4
,则
1
b1b2
+
1
b2b3
+…+
1
b10b11
=(  )
A.
1
11
B.
9
10
C.
10
11
D.
11
12
由已知得
n
a1+a2+…+an
=
1
2n+1

∴a1+a2+…+an=n(2n+1)=Sn
当n≥2时,an=Sn-Sn-1=4n-1,验证知当n=1时也成立,
∴an=4n-1,
bn=
an+1
4
=n

1
bnbn+1
=
1
n
-
1
n+1

1
b1b2
+
1
b2b3
+…+
1
b10b11
=(1-
1
2
)+(
1
2
-
1
3
)
+…+(
1
10
-
1
11
)=
10
11

故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湖州二模)定义
n
p1+p2+…+pn
为n个正数p1,p2,…pn的“均倒数”.若已知数列{an}的前n项的“均倒数”为
1
2n+1
,又bn=
an+1
4
,则
1
b1b2
+
1
b2b3
+…+
1
b10b11
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:称
n
p1+p2+…+pn
为n个正数p1,p2,…pn的“均倒数”.若已知数列{an}的前n项的“均倒数”为
1
2n+1

(1)求数列{an}的通项公式;
(2)设cn=
an
2n+1
,试判定数列{cn}的单调性;
(3)设dn=2nan,试求数列{dn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:称
n
p1+p2+…+pn
为n个正数p1,p2,…pn的“均倒数”.若已知数列{an}的前n项的“均倒数”为
1
2n+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设dn=2nan,试求数列{dn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义:称
n
p1+p2+…+pn
为n个正数p1,p2,…pn的“均倒数”.若已知数列{an}的前n项的“均倒数”为
1
2n+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设dn=2nan,试求数列{dn}的前n项和Tn

查看答案和解析>>

同步练习册答案