精英家教网 > 高中数学 > 题目详情
设函数,对任意恒成立,则实数的取值范围是______________.

试题分析:因为,那么可知任意恒成立,即为

然后对于m>0时,则有
当m>0时,则恒成立显然无解,故综上可知范围是
点评:对于不等式的恒成立问题要转化为分离参数 思想求解函数的最值来处理或者直接构造函数,运用函数的最值来求解参数的范围,这是一般的解题思路,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(Ⅰ)设是定义在实数集R上的函数,满足,且对任意实数a,b有
(Ⅱ)设函数满足

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则使幂函数为奇函数且在上单调递增的a值的个数为(    )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设p:函数y=loga(x+1)(a>0且a≠1)在(0,+∞)上单调递减; q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p∧q为假,p∨q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数的定义域是,且满足,如果对于0<x<y,都有
(1)求
(2)解不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如何取值时,函数存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

利民商店经销某种洗衣粉,年销售量为6000包,每包进价2.80元,销售价3.40元,全年分若干次进货,每次进货x包,已知每次进货运输劳务费62.50元,全年保管费为1.5x元。
(1)把该商店经销洗衣粉一年的利润y(元)表示为每次进货量x(包)的函数,并指出函数的定义域;
(2)为了使利润最大,每次应该进货多少包?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)设函数,且,求证:(1)
(2)函数在区间内至少有一个零点;
(3)设是函数的两个零点,则.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对任意,函数不存在极值点的充要条件是(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案