精英家教网 > 高中数学 > 题目详情

(04年全国卷III文)(12分)

设椭圆的两个焦点是 F1(-c,0), F2(c,0)(c>0),且椭圆上存在点P,使得直线 PF1与直线PF2垂直.

(I)求实数 m 的取值范围.

(II)设l是相应于焦点 F2的准线,直线PF2与l相交于点Q. 若,求直线PF2的方程.

解析:⑴∵直线PF1⊥直线PF2 

∴以O为圆心以c为半径的圆:x2+y2=c2与椭圆:有交点.即有解

又∵c2=a2-b2=m+1-1=m>0 

 ∴

⑵设P(x,y), 直线PF2方程为:y=k(x-c)

∵直线l的方程为:

∴点Q的坐标为()

  ∴点P分有向线段所成比为

∵F2(,0),Q ()  ∴P()

∵点P在椭圆上 ∴

直线PF2的方程为:y=(x-).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(04年全国卷III理)(12分)

解方程4x+|1-2x|=11.

查看答案和解析>>

科目:高中数学 来源: 题型:

(04年全国卷III)(12分)

某村计划建造一个室内面积为 800m2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留 lm 宽的通道,沿前侧内墙保留3m宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

(04年全国卷III理)(12分)

三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3.

(1)求证 AB⊥BC ;

(II)如果 AB=BC=2,求AC与侧面PBC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(04年全国卷III理)(14分)

已知数列{an}的前n项和Sn满足:Sn=2an +(-1)n,n≥1.

 

⑴写出数列{an}的前3项a1,a2,a3

⑵求数列{an}的通项公式;

⑶证明:对任意的整数m>4,有.

查看答案和解析>>

科目:高中数学 来源: 题型:

(04年全国卷III文)(12分)

三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3.

(1)求证 AB⊥BC ;

(II)如果 AB=BC=2,求侧面PBC与侧面PAC所成二面角的大小.

 

查看答案和解析>>

同步练习册答案