精英家教网 > 高中数学 > 题目详情
在△ABC中,D为BC中点,a,b,c成等差数列且a+c=8,cosB=
3
5
,a>c
,则
AD
BC
等于(  )
分析:由已知,先求出b=4,利用余弦定理由cosB=
3
5
得出a、c关系式,解出a,c,而
AD
BC
=
1
2
(
AB
+
AC
)(
AC
-
AB)
求解计算.
解答:解:∵a,b,c成等差数列,a+c=8,
∴2b=8,b=4.
cosB=
3
5
=
a2+c2-b2
2ac
=
(a+c)2 -2ac-b2
2ac
=
48  -2ac
2ac
,得出ac=15,与a+c=8联立解得a=5,c=3.
AD
BC
=
1
2
(
AB
+
AC
)(
AC
-
AB)
=
1
2
AC
2
-
AB
2
)=
1
2
(b2-c2)=
7
2

故选C.
点评:本题考查余弦定理的应用,向量加法的几何意义,向量数量积的运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,D为BC的中点,已知
AB
=
a
AC
=
b
,则下列向量一定与
AD
同向的是(  )
A、
a
+
b
|
a
+
b
|
B、
a
|
a
|
+
b
|
b
|
C、
a
-
b
|
a
-
b
|
D、
a
|
a
|
-
b
|
b
|

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,D为边AB上一点,DA=DC.已知B=
π
4
,BC=1.
(Ⅰ)若DC=
6
3
,求角A的大小;
(Ⅱ)若△BCD面积为
1
6
,求边AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D为边BC上的一点,BD=
1
2
DC
,∠ADB=120°,AD=2,若△ADC的面积为3-
3
,则∠BAC=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D为BC边中点,∠B+∠DAC=90°,判断△ABC的形状.

查看答案和解析>>

同步练习册答案