已知函数,,其中.
(1)设函数,若在区间是单调函数,求的取值范围;
(2)设函数,是否存在,对任意给定的非零实数,存在惟一的非零实数(),使得成立?若存在,求的值;若不存在,请说明理由.
解:(1)因 ……1分
, ∵在区间上单调
恒成立 ……2分
恒成立
设
令有,记
由函数的图像可知,在上单调递减,在上单调递增,……4分
∴,于是 ……5分
∴ ……6分
(2)当时有; ……7分
当时有,因为当时不合题意,因此,……8分
下面讨论的情形,
记 求得 A,B=
(ⅰ)当时,在上单调递增,所以要使成立,只能且,因此有 ……9分
(ⅱ)当时,在上单调递减,所以要使成立,只能且,因此 ……11分
综合(ⅰ)(ⅱ) ……12分
当时A=B,则,即使得成立,
因为在上单调递增,所以的值是唯一的;…13分
同理,,即存在唯一的非零实数,要使成立,
所以满足题意. …14分
【解析】本试题主要是考查导数在研究函数中的运用。
(1)根据函数在给定区间单调递增,则可以利用导函数恒大于等于零,分离参数的思想求解参数的范围,
(2)分别分析函数f(x)和g(x)的性质得到单调性,进而确定是否存在点满足已知条件来求解得到。
科目:高中数学 来源: 题型:
(1)求ω的取值范围;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,a=,b+c=3(b>c),当ω最大时,f(A)=1,求边b,c的长.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省五校联盟高三下学期第一次联考文科数学试卷(解析版) 题型:解答题
已知,函数,,(其中e是自然对数的底数,为常数),
(1)当时,求的单调区间与极值;
(2)是否存在实数,使得的最小值为3. 若存在,求出的值,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省等三校高三2月月考数学文卷 题型:解答题
(本小题满分14分)
已知函数,.(其中为自然对数的底数),
(Ⅰ)设曲线在处的切线与直线垂直,求的值;
(Ⅱ)若对于任意实数≥0,恒成立,试确定实数的取值范围;
(Ⅲ)当时,是否存在实数,使曲线C:在点
处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年天津市高三十校联考理科数学 题型:解答题
.(14分)已知函数,,其中
(Ⅰ)若是函数的极值点,求实数的值
(Ⅱ)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com