精英家教网 > 高中数学 > 题目详情
5.已知直线2ax+by-2=0(a>0,b>0)过点(1,2),则$\frac{1}{a}+\frac{1}{b}$的最小值是(  )
A.2B.3C.4D.1

分析 根据直线过点(1,2),求出a,b的关系.利用“乘1法”与基本不等式的性质即可得出.

解答 解:直线2ax+by-2=0(a>0,b>0)过点(1,2),
可得:2a+2b=2,即a+b=1.
则$\frac{1}{a}+\frac{1}{b}$=($\frac{1}{a}+\frac{1}{b}$)(a+b)=2+$\frac{a}{b}+\frac{b}{a}$$≥2+2\sqrt{\frac{b}{a}×\frac{a}{b}}$=4.当且仅当a=b=$\frac{1}{2}$时取等号.
∴$\frac{1}{a}+\frac{1}{b}$的最小值为4.
故选C.

点评 本题考查了“乘1法”与基本不等式的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.定义在(0,$\frac{π}{2}$)的函数f(x)=8sinx-tanx的最大值为$3\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=alnx+\frac{{2{a^2}}}{x}+x({a∈R})$.
(1)当a=1时,讨论函数y=f(x)的单调性;
(2)若对任意m,n∈(0,2)且m≠n,有$\frac{f(m)-f(n)}{m-n}<1$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知如图正四面体SABC的侧面积为$48\sqrt{3}$,O为底面正三角形ABC的中心.
(1)求证:SA⊥BC;
(2)求点O到侧面SABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}:a1=1,${a_{n+1}}=2{a_n}+3,({n∈{N^+}})$,则an=(  )
A.2n+1-3B.2n-1C.2n+1D.2n+2-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U={0,1,2,3,4},集合A={1,2},B={0,2,4},则(∁UA)∩B等于(  )
A.{0,4}B.{0,3,4}C.{0,2,3,4}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知b>0,log3b=a,log6b=c,3d=6,则下列等式成立的是(  )
A.a=2cB.d=acC.a=cdD.c=ad

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,BD∩AC=G.
(1)求证:AE⊥平面BCE;
(2)求三棱锥E-ADC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)是定义在R上的奇函数,且在[0,+∞)上是增函数,则f(x+1)≥0的解集为(  )
A.(-∞,-1]B.(-∞,1]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

同步练习册答案