精英家教网 > 高中数学 > 题目详情
已知三个正数a,b,c满足a<b<c.
(1)若a,b,c是从{
1
10
2
10
,…
9
10
}
中任取的三个数,求a,b,c能构成三角形三边长的概率;
(2)若a,b,c是从(0,1)中任取的三个数,求a,b,c能构成三角形三边长的概率.

精英家教网
(1)若a,b,c能构成三角形,则a+b>c,c≥
4
10

①若c=
4
10
时,b=
3
10
,a=
2
10
.共1种;
②若c=
5
10
时.b=
4
10
,a=
3
10
2
10
.共2种;
同理c=
6
10
时,有3+1=4种;c=
7
10
时,有4+2=6种;c=
8
10
时,有5+3+1=9种;c=
9
10
时,有6+4+2=12种.
于是共有1+2+4+6+9+12=34种.
下面求从{
1
10
2
10
,…
9
10
}
中任取的三个数a,b,c(a<b<c)的种数:
①若a=
1
10
b=
2
10
,则c=
3
10
,…,
9
10
,有7种;b=
3
10
,c=
4
10
,…,
9
10
,有6种;b=
4
10
c=
5
10
,…,
9
10
,有5种;…; b=
8
10
,c=
9
10
,有1种.
故共有7+6+5+4+3+2+1=28种.
同理,a=
2
10
时,有6+5+4+3+2+1=21种;a=
3
10
时,有5+4+3+2+1=15种;a=
4
10
时,有4+3+2+1=10种;a=
5
10
时,有3+2+1=6种;a=
6
10
时,有2+1=3种;a=
7
10
时,有1种.这时共有28+21+15+10+6+3+1=84种.
∴a,b,c能构成三角形的概率为
34
84
=
17
42

(2)a,b,c能构成三角形的充要条件是
0<a<b<c<1
a+b>c
0<c<1

在坐标系aOb内画出满足以上条件的区域(如右图阴影部分),
由几何概型的计算方法可知,只求阴影部分的面积与图中正方形的面积比即可.
又S阴影=
1
2
,于是所要求的概率为P=
1
2
1
=
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三个正数a,b,c满足a<b<c.
(Ⅰ)若a,b,c是从1,2,3,4,5中任取的三个数,求a,b,c能构成三角形三边长的概率;
(Ⅱ)若a,b,c是从区间(0,1)内任取的三个数,求a,b,c能构成三角形三边长的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个正数a,b,c满足a-b-c=0,a+bc-1=0,则a的最小值是
2
2
-2
2
2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个正数a,b,c满足2b+c≤3a,2c+a≤3b,则
b
a
的取值范围是
[
1
3
3
2
]
[
1
3
3
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个正数a,b,c,满足2a≤b+c≤4a,-a≤b-c≤a,则
b
c
+
c
b
的取值范围(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个正数a,b,c满足a<b<c
(1)若a,b,c是从{1,2,3,4}中任取的三个数,求a,b,c能构成三角形三边长的概率.
(2)若a,b,c是从{1,2,3,4,5}中任取的三个数,求a,b,c能构成三角形三边长的概率.

查看答案和解析>>

同步练习册答案