精英家教网 > 高中数学 > 题目详情

设抛物线C1x 2=4 y的焦点为F,曲线C2与C1关于原点对称.

(Ⅰ) 求曲线C2的方程;

(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PAPB,切点AB,满足| AB |是 | FA | 与 | FB | 的等差中项?若存在,求出点P的坐标;若不存在,请说明理由.

 


本题主要考查抛物线几何性质,直线与抛物线的位置关系、等差中项等基础知识,同时考查解析几何的基本思想方法和运算求解能力。满分15分。

(Ⅰ)解;因为曲线关于原点对称,又的方程

所以方程为.                 …………5分

(Ⅱ)解:设,

的导数为,则切线的方程

,得

因点在切线上,故

同理,

所以直线经过两点,

即直线方程为,即

代入,则,

所以

由抛物线定义得

所以

由题设知,,即

解得,从而

综上,存在点满足题意,点的坐标为

 或

                                              …………15分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=
12
的椭圆C2与抛物线C1在x轴上方的交点为P.
(1)当m=1时,求椭圆C2的方程;
(2)当△PF1F2的边长恰好是三个连续的自然数时,求抛物线方程;此时设⊙C1、⊙C2…⊙Cn是圆心在y2=4mx(m>0)上的一系列圆,它们的圆心纵坐标分别为a1,a2…an,已知a1=6,a1>a2>…>an>0,又⊙Ck(k=1,2,…,n)都与y轴相切,且顺次逐个相邻外切,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1、F2为焦点,离心率e=
12
的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆的方程及其右准线的方程;
(2)是否存在实数m,使得△PF1F2的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由;
(3)在(1)的条件下,直线l经过椭圆C2的右焦点F2,与抛物线C1交于A1、A2,如果以线段A1A2为直径作圆,试判断点P与圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省高三第二学期第一次统考文科数学 题型:解答题

(本题满分15分) 设抛物线C1:x 2=4 y的焦点为F,曲线C2与C1关于原点对称.

(Ⅰ) 求曲线C2的方程;

(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PA,PB,切点A,B,满足| AB |是 | FA | 与 | FB | 的等差中项?若存在,求出点P的坐标;若不存在,请说明理由.

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2012届浙江省高三调研测试文科数学试卷 题型:解答题

(本题满分15分) 设抛物线C1x 2=4 y的焦点为F,曲线C2与C1关于原点对称.

(Ⅰ) 求曲线C2的方程;

(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PAPB,切点AB,满足| AB |是 | FA | 与 | FB | 的等差中项?若存在,求出点P的坐标;若不存在,请说明理由

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案