精英家教网 > 高中数学 > 题目详情

乒乓球比赛规则规定,一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,发球1分的概率为0.6,各次发球的胜负结果相互独立。甲、乙的一局比赛中,甲先发球。

(I)     求开球第4次发球时,甲、乙的比分为1比2的概率;

(II)   求开始第5次发球时,甲得分领先的概率。

【解析】本试题主要是考查了关于独立事件的概率的求解,以及分布列和期望值问题。首先要理解发球的具体情况,然后对于事件的情况分析,讨论,并结合独立事件的概率求解结论。

【点评】首先从试题的选材上来源于生活,同学们比较熟悉的背景,同时建立在该基础上求解进行分类讨论的思想的运用,以及能结合独立事件的概率公式求解分布列的问题。情景比较亲切,容易入手,但是在讨论情况的时候,容易丢情况。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

乒乓球比赛规则规定:一局比赛,对方比分在10平前,一方连续发球2次后,对方再连续发球两次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1:2的概率;
(2)求开始第5次发球时,甲领先得分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;
(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

乒乓球比赛规则规定:一局比赛,对方比分在10平前,一方连续发球2次后,对方再连续发球两次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1:2的概率;
(2)求开始第5次发球时,甲领先得分的概率.

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。甲、乙的一局比赛中,甲先发球。
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)ξ表示开始第4次发球时乙的得分,求ξ的期望。

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(大纲卷解析版) 题型:解答题

乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换。每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。甲、乙的一局比赛中,甲先发球。

(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;

(Ⅱ)表示开始第4次发球时乙的得分,求的期望。

【解析】解:

 

查看答案和解析>>

同步练习册答案