精英家教网 > 高中数学 > 题目详情
(2003•朝阳区一模)圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多是(  )
分析:要求最多的交点个数,等价转化为将12个点任意取4个分为一组,总共有多少组.由此结合排列组合公式加以计算,可得本题答案.
解答:解:∵圆周上有12个不同的点,
∴此12个点中没有三点共线,可作为凸十二边形的12个顶点
∵每4个圆周上点就可以有一个内部交点,
∴当这些交点不重合的时候,圆内交点最多,
因此,交点个数最多为
C
4
12
=495个
故选:D
点评:本题给出圆上的12个同的点,求经过其中任意两点作弦在圆内所得交点个数.着重考查了圆的性质和排列组合公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2003•朝阳区一模)复数
5
1+2i
的共轭复数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•朝阳区一模)若a>b>0,集合M={x|b<x<
a+b
2
},N={x|
ab
<x<a
},则M∩N表示的集合为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•朝阳区一模)设a、b、c为三条不同的直线,α、β、γ为三个不同的平面,下面四个命题中真命题的个数是(  )
(1)若α⊥β,β⊥γ,则α∥β.
(2)若a⊥b,b⊥c,则a∥c或a⊥c.
(3)若a?α,b、c?β,a⊥b,a⊥c,则α⊥β.
(4)若a⊥α,b?β,a∥b,则α⊥β.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•朝阳区一模)函数y=arcsin(sinx)的图象是(  )

查看答案和解析>>

同步练习册答案