精英家教网 > 高中数学 > 题目详情
连续抛掷一枚硬币3次,则至少有一次正面向上的概率是(  )
A、
1
8
B、
7
8
C、
1
7
D、
5
8
考点:相互独立事件的概率乘法公式
专题:概率与统计
分析:本题是一个等可能事件的概率,试验发生包含的事件是将一枚硬币连续抛掷三次共有23=8种结果,满足条件的事件的对立事件是三枚硬币都是正面,有1种结果,根据对立事件的概率公式得到结果.
解答: 题意知本题是一个等可能事件的概率,
试验发生包含的事件是将一枚硬币连续抛掷三次共有23=8种结果,
满足条件的事件的对立事件是三枚硬币都是反面,有1种结果,
∴至少一次正面向上的概率是1-
1
8
=
7
8

故选:B.
点评:本题考查等可能事件的概率,本题解题的关键是对于比较复杂的事件求概率时,可以先求对立事件的概率,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在极坐标系中,求点M(4,
12
)关于直线x=
π
3
的对称点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)=
4x+k•2x+1
4x+2x+1

(1)设g(x)=f(x)-1,当k>1时,试求函数g(x)的值域;
(2)若f(x)的最小值为-3,试求k的值;
(3)若对任意的实数x1,x2,x3,存在f(x1),f(x2),f(x3)为三边边长的三角形,试求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3-3x的单调递减区间是(  )
A、(∞,-1)
B、(1,+∞)
C、(-∞,-1)∪(1,+∞)
D、(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x2-2x,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设bn=
3
anan+1
,Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(wx+θ)(-π<θ<0),y=f(x),周期为π,图象的一个对称中心为(
π
6
,0)

(1)求f(x)的解析式
(2)求函数y=f(x)的单调增区间
(3)在△ABC中,a,b,c分别为A,B,C的对边,S为其面积,若f(
A
2
)=0,b=1,S△ABC=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足约束条件
x≥1
y≤a(a>1)
x-y≤0
,则z=x+y的最大值是4,则a=(  )
A、2B、3C、3或1D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知总体的各个个体的值由小到大依次为3,7,a,b,12,20,且总体的中位数为12,若要使该总体的标准差最小,则a=
 
,b=
 

查看答案和解析>>

同步练习册答案