精英家教网 > 高中数学 > 题目详情
某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为   
【答案】分析:先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可
解答:解:三个电子元件的使用寿命均服从正态分布N(1000,502
得:三个电子元件的使用寿命超过1000小时的概率为
设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}
C={该部件的使用寿命超过1000小时}
则P(A)=,P(B)=
P(C)=P(AB)=P(A)P(B)=×=
故答案为
点评:本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黑龙江)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为
3
8
3
8

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,某个部件由三个元件按如图方式连接而成,元件K正常工作且元件
A1,A2至少有一个正常工作时,部件正常工作.设三个元件的使用寿命ξ(单位:小时)均服从正态分布N(1000,σ2),且P(ξ<1100)=0.9,各个元件能否正常工作相互独立,那么该部件的使用寿命超过1100小时的概率为(  )
A、0.19B、0.019C、0.01D、0.001

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012新课标理)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从

正态分布,且各个元件能否正常相互独立,那么该部件的使用寿命

超过1000小时的概率为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为    

查看答案和解析>>

同步练习册答案