精英家教网 > 高中数学 > 题目详情

已知实数a,b满足a(1+i)=2-bi,则(数学公式3=


  1. A.
    -1
  2. B.
    1
  3. C.
    -i
  4. D.
    i
C
分析:先利用复数相等的充要条件求出a,b的值,代入(3中,利用复数除法的法则i2=-1求出代数式的值.
解答:因为实数a,b满足a(1+i)=2-bi,
所以a+ai=2-bi,
所以
所以a=2,b=-2,
所以(3==i3=-i,
故选C.
点评:本题考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,以及复数相等的条件,两个复数相除时,一般需要分子和分母同时除以分母的共轭复数,再进行化简求值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、已知实数a、b满足3a=10b,下列5个关系式:①0<a<b;②0<b<a;③a<b<0;④b<a<0;⑤a=b.其中不可能成立的关系有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a、b满足a-2b+3≥0,且使得函数f(x)=
1
3
x3+ax2+bx
无极值,则
b+1
a+2
的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b满足等式2a=3b,给出下列五个关系式中:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.则所有可能成立的关系式的序号为
①②⑤
①②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a、b满足“a>b”,则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b满足(
1
2
)a=(
1
3
)b
,给出下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中能使得上式成立的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案