精英家教网 > 高中数学 > 题目详情
7.已知命题:若数列{an}为等差数列,且am=k,an=l(m≠n,m,n∈N+),则am+n=$\frac{ln-km}{n-m}$,现已知等比数列{bn}(bn>0,n∈N+),bm=a,bn=b(m≠n,m,n∈N+)若类比上述结论,则可得到bm+n(  )
A.$\root{n-m}{\frac{{b}^{n}}{{a}^{m}}}$B.$\frac{{b}^{n}-{a}^{m}}{n-m}$C.$\root{n-m}{{b}^{n}-{a}^{m}}$D.$\frac{\frac{{b}^{n}}{{a}^{m}}}{n-m}$

分析 首先根据等差数列和等比数列的性质进行类比,等差数列中的bn-am可以类比等比数列中的$\frac{{b}^{n}}{{a}^{m}}$,等差数列中的$\frac{ln-km}{n-m}$,可以类比等比数列中的$\root{n-m}{\frac{{b}^{n}}{{a}^{m}}}$,很快就能得到答案.

解答 解:等差数列中的bn和am可以类比等比数列中的bn和am
等差数列中的bn-am可以类比等比数列中的$\frac{{b}^{n}}{{a}^{m}}$,
等差数列中的$\frac{ln-km}{n-m}$,可以类比等比数列中的$\root{n-m}{\frac{{b}^{n}}{{a}^{m}}}$.
故bm+n=$\root{n-m}{\frac{{b}^{n}}{{a}^{m}}}$,
故选:A.

点评 本题主要考查类比推理的知识点,解答本题的关键是熟练掌握等差数列和等比数列的性质,根据等差数列的所得到的结论,推导出等比数列的结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知集合A={y|y=x2-1},B={x|y=$\sqrt{x-1}$},则A∩B为(  )
A.B.[1,+∞)C.[-1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某同学去年寒假期间对其30位亲友的饮食习惯作了一次调查,其中12位五十岁以下的亲友中有4位偏爱蔬菜:18位五十岁以上的亲友中有2位偏爱肉类.
(1)完成如下的2×2列联表:
偏爱蔬菜偏受肉类合计
五十岁以下
五十岁以上
合计
(2)有多大的把握认为“其亲友的饮食习惯与年龄有关”?
(3)若要从这30位亲友中抽出5人进行有关饮食习惯方面的进一步调查,该如何合量地进行抽样?
附计算公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
附表:
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,∠C=$\frac{π}{2}$,∠B=$\frac{π}{6}$,AC=2,M为AB中点,将△ACM沿CM折起,使A,B之间的距离为2$\sqrt{2}$,则三棱锥M-ABC的外接球的表面积为(  )
A.12πB.16πC.20πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.曲线y=e-x在点(x0,$\frac{1}{e}$)处的切线与坐标轴围成的三角形的面积为$\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点P(2,2)在曲线y=ax2+bx上,如果该曲线在点P处切线的斜率为9,那么ab=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x) 在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )
A.y=-2x+3B.y=2x-1C.y=-6x+7D.y=3x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=x3B.y=ln|x|C.y=sin($\frac{π}{2}$-x)D.y=-x2-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$.
(1)求f($\frac{π}{4}$-α)=$\frac{3\sqrt{7}}{4}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求sinα的值;
(2)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位长度后,再将得到的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[-π,π]上的单调递减区间.

查看答案和解析>>

同步练习册答案