精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=2x3-3(a+$\frac{1}{a}}$)x2+6x+1,其中a>0.
(1)若函数f(x)没有极值,求实数a的值;
(2)若函数f(x)在区间(2,3)上单调递减,求实数a的取值范围.

分析 (1)先求导,再由函数f(x)没有极值,得到函数单调递增或单调递减,问题得以解决,
(2)由函数f(x)在区间(2,3)上单调递减,得到f′(2)≤0且f′(3)≤0,即可求出a的范围.

解答 解:(1)$f'(x)=6{x^2}-6({a+\frac{1}{a}})x+6=6({x-a})(x-\frac{1}{a})$,
由条件,只需${[{6({a+\frac{1}{a}})}]^2}-4×6×6≤0$,
即${(a+\frac{1}{a})^2}≤0$,
所以$a=\frac{1}{a}$,
因为a>0,
从而a=1.
(2)由条件,知f′(2)≤0且f′(3)≤0,
即$\left\{\begin{array}{l}{(2-a)(2-\frac{1}{a})≤0}\\{(3-a)(3-\frac{1}{a})≤0}\end{array}\right.$,
因为a>0,
所以$\left\{\begin{array}{l}{(a-2)(2a-1)≥0}\\{(a-3)(3a-1)≥0}\end{array}\right.$,
解得a≤$\frac{1}{3}$或a≥3

点评 本题考查函数的导数的应用以及参数的取值范围,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=|x-a|+a,g(x)=4-x2,若存在x∈R使g(x)≥f(x),则a的取值范围是$({-∞,\frac{17}{8}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.下列哪一组中的函数f(x)与g(x)相等?
(1)f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1;
(2)f(x)=x2,g(x)=($\sqrt{x}$)4
(3)f(x)=x2,g(x)=$\root{3}{{x}^{6}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(4,4),则$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{△x}$=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某商场五一进行抽奖促销活动,当日在该商场消费的顾客即可参加抽奖活动,抽奖情况如下:消费金额每满500元,可获得一次抽奖机会,即设消费金额x元,x∈[500,1000)可抽奖1次,x∈[1000,1500)可抽奖2次,x∈[1500,2000)可抽奖3次,以此类推.
抽奖箱中有9个大小形状完全相同的小球,其中4个红球、3个白球、2个黑球(每次只能抽取一个,且不放回抽取).
第一种抽奖方式:若抽得红球,获奖金10元;若抽得白球,获奖金20元;若抽得黑球,获奖金40元.
第二种抽奖方式:抽到红球,奖金0元;抽到白球,获得奖金50元;若抽到黑球,获奖金100元.
(1)若某顾客在该商场当日消费金额为2000元,用第一种抽奖方式进行抽奖,求获得奖金70元的概率
(2)若某顾客在该商场当日消费金额为1200元,请同学们告诉这位顾客哪种抽奖方式对他更有利.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题“若x∈[1,+∞),则有x+$\frac{1}{x}$≥2成立”的逆命题、否命题、逆否命题中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=sinx+cosx+sin2x,若?t∈R,x∈R,asint+3a+1≥f(x)恒成立,则实数a的取值范围是(  )
A.[0,+∞)B.$[\frac{{\sqrt{2}}}{2},+∞)$C.$[{\frac{{\sqrt{2}}}{4},+∞})$D.$[\sqrt{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足$\frac{a_n}{{{a_{n-1}}}}$=3(n∈N*,n≥2),a4=9.
(1)求数列{an}的通项公式an
(2)设bn=1-2log3an,若数列{bn}的前k项和Sk=-45,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对于集合A={a1,a2,…,an}(n∈N*,n≥3),定义集合S={x|x=ai+aj,1≤i<j≤n},若an=2n+1,则集合S中各元素之和为4n2+2n-12.

查看答案和解析>>

同步练习册答案