精英家教网 > 高中数学 > 题目详情

定义在R上的函数f(x)满足f(x)-f(x-5)=0,当x∈(-1,4]时,f(x)=x2-2x,则函数f(x)在[0,2013]上的零点个数是________.

1207
分析:由f(x)-f(x-5)=0可判断出函数的周期性,由x∈(-1,4]时函数的解析式,可以求出一个周期内函数的零点个数,进而可得函数f(x)在[0,2013]上的零点个数
解答:∵f(x)-f(x-5)=0
∴f(x)=f(x-5)
∴f(x)是以5为周期的周期函数,
又∵f(x)=x2-2x在x∈(-1,4]区间内有3个零点,
∴f(x)在任意周期上都有3个零点,
∵x∈(3,2013]上包含402个周期,
又∵x∈[0,3]时也存在一个零点x=2,
故零点数为3×402+1=1207.
故答案为:1207
点评:本题考查的知识点是根的存在性及根的个数判断,其中根据已知分析出函数的周期性是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案