精英家教网 > 高中数学 > 题目详情
已知函数,若?x1,x2∈R,且x1≠x2,使得f(x1)=f(x2),则实数a的取值范围是   
【答案】分析:分类讨论,利用二次函数的单调性,结合?x1,x2∈R,且x1≠x2,使得f(x1)=f(x2),即可求得实数a的取值范围.
解答:解:由题意,
∴a<2或3<a<5
故答案为:(-∞,2)∪(3,5).
点评:本题考查分类讨论的数学思想,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x
1+|x|
 (x∈R)
时,则下列结论不正确的是(  )
A、?x∈R,等式f(-x)+f(x)=0恒成立
B、?m∈(0,1),使得方程|f(x)|=m有两个不等实数根
C、?x1,x2∈R,若x1≠x2,则一定有f(x1)≠f(x2
D、?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x1+|x|

(Ⅰ)判断并证明函数f(x)的奇偶性;
(Ⅱ)若x1<x2,判断 f (x1)和f (x2)的大小,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

问题1:已知函数f(x)=
x
1+x
,则f(
1
10
)+f(
1
9
)+
+f(
1
2
)+f(1)+f(2)+
…+f(9)+f(10)=
19
2
19
2

我们若把每一个函数值计算出,再求和,对函数值个数较少时是常用方法,但函数值个数较多时,运算就较繁锁.观察和式,我们发现f(
1
2
)+f(2)
、…、f(
1
9
)+f(9)
f(
1
10
)+f(10)
可一般表示为f(
1
x
)+f(x)
=
1
x
1+
1
x
+
x
1+x
=
1
1+x
+
x
1+x
=
1+x
1+x
=1
为定值,有此规律从而很方便求和,请求出上述结果,并用此方法求解下面问题:
问题2:已知函数f(x)=
1
2x+
2
,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数数学公式,若?x1,x2∈R,且x1≠x2,使得f(x1)=f(x2),则实数a的取值范围是________.

查看答案和解析>>

同步练习册答案