精英家教网 > 高中数学 > 题目详情
设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与的大小关系;
(Ⅲ)是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.
解:(Ⅰ)由题设易知f(x)=lnx,g(x)=lnx+
∴g′(x)=,令g′(x)=0,得x=1,
当x∈(0,1)时,g′(x)<0,故g(x)的单调递减区间是(0,1),
当x∈(1,+∞)时,g′(x)>0,故g(x)的单调递增区间是(1,+∞),
因此x=1是g(x)的唯一极值点,且为极小值点,从而是最小值点,
∴最小值为g(1)=1;
(Ⅱ)=﹣lnx+x,
设h(x)=g(x)﹣=2lnx﹣x+
则h′(x)=
当x=1时,h(1)=0,即g(x)=
当x∈(0,1)∪(1,+∞)时,h′(x)<0,h′(1)=0,
因此,h(x)在(0,+∞)内单调递减,
当0<x<1,时,h(x)>h(1)=0,即g(x)>
当x>1,时,h(x)<h(1)=0,即g(x)<
(Ⅲ)满足条件的x0 不存在.证明如下:证法一 假设存在x0>0,
使|g(x)﹣g(x0)|<成立,即对任意x>0,
,(*)但对上述x0,取 时,
有 Inx1=g(x0),这与(*)左边不等式矛盾,
因此,不存在x0>0,使|g(x)﹣g(x0)|< 成立.
证法二 假设存在x0>0,使|g(x)﹣g(x0)|成<立.
由(Ⅰ)知, 的最小值为g(x)=1.
>Inx,
而x>1 时,Inx 的值域为(0,+∞),
∴x≥1 时,g(x)的值域为[1,+∞),从而可取一个x1>1,
使 g(x1)≥g(x0)+1,即g(x1)﹣g(x0)≥1,
故|g(x1)﹣g(x0)|≥1>,与假设矛盾.
∴不存在x0>0,使|g(x)﹣g(x0)|<成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、设函数f(x)定义在R上,且f(x+1)是偶函数,f(x-1)是奇函数,则f(2003)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

10、设函数f(x)定义在实数集上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x-1,则f(-2),f(0),f(3)从小到大的顺序是
f(0)<f(3)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=
1
x
,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与g(
1
x
)
的大小关系;
(Ⅲ)是否存在x0>0,使得|g(x)-g(x0)|<
1
x
对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义在R上,f(0)≠0,且对于任意a,b∈R,都有f(a+b)+f(a-b)=2f(a)f(b).
(1)求证:f(x)为偶函数;
(2)若存在正数m使f(m)=0,求证:f(x)为周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义在R上,对于任意实数m、n,恒有f(m+n)=f(m)?f(n),且当x>0时,0<f(x)<1.
(1)求证:f(0)=1,且当x<0时,f(x)>1;
(2)设集合A={(x,y)|f(x2)?f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=∅,求a的取值范围.

查看答案和解析>>

同步练习册答案