精英家教网 > 高中数学 > 题目详情

已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为

(1)求椭圆方程;

(2)若直线轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.

 

【答案】

(1)     (2)见解析

【解析】(1)由e和a的值,可求出a,c进而求出b,所以椭圆的标准方程确定.

(2)设,直线的方程为,与椭圆方程联立解方程组可得

M的坐标,同理由直线的方程可求出N的坐标.可求出MN的方程,再令y=0,得直线MN与x轴的交点坐标它与右焦点坐标为重合,可求出t值,若满足t>2,则存在,否则不存在

(1)由已知椭圆C的离心率,可得

椭圆的方程为

(2)设,直线斜率为

则直线的方程为

,解得

点坐标为

同理,设直线的斜率为    则点坐标为(

由直线与直线的交点在直线

的方程为      令,得

即直线MN与轴交点为       又

又椭圆右焦点为,故当过椭圆的焦点

 

练习册系列答案
相关习题

科目:高中数学 来源:2013年四川省资阳市高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0)经过(1,1)与()两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足|MA|=|MB|.求证:++为定值.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高考数学压轴卷(解析版) 题型:选择题

已知椭圆C:+=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012年吉林省高考数学仿真模拟试卷9(理科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学总复习备考综合模拟试卷(3)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

同步练习册答案